
Tree Physiology 39, 1416–1427
doi:10.1093/treephys/tpz038

Research paper

The stomatal response to rising CO2 concentration and drought is
predicted by a hydraulic trait-based optimization model

Yujie Wang 1,3, John S. Sperry1, Martin D. Venturas 1, Anna T. Trugman 1, David M. Love 1,2

and William R. L. Anderegg 1

1School of Biological Sciences, University of Utah, Salt Lake City, 257S 1400E, UT 84112, USA; 2Warnell School of Forestry and Natural Resources, University of Georgia,
180 E Green Street, Athens, GA 30602-2152, USA; 3Corresponding author yujie.wang@utah.edu orcid.org/0000-0002-3729-2743

Received December 6, 2018; accepted March 22, 2019; handling Editor Annikki Mäkelä

Modeling stomatal control is critical for predicting forest responses to the changing environment and hence the global
water and carbon cycles. A trait-based stomatal control model that optimizes carbon gain while avoiding hydraulic
risk has been shown to perform well in response to drought. However, the model’s performance against changes in
atmospheric CO2, which is rising rapidly due to human emissions, has yet to be evaluated. The present study tested
the gain–risk model’s ability to predict the stomatal response to CO2 concentration with potted water birch (Betula
occidentalis Hook.) saplings in a growth chamber. The model’s performance in predicting stomatal response to changes
in atmospheric relative humidity and soil moisture was also assessed. The gain–risk model predicted the photosynthetic
assimilation, transpiration rate and leaf xylem pressure under different CO2 concentrations, having a mean absolute
percentage error (MAPE) of 25%. The model also predicted the responses to relative humidity and soil drought with
a MAPE of 21.9% and 41.9%, respectively. Overall, the gain–risk model had an MAPE of 26.8% compared with the
37.5% MAPE obtained by a standard empirical model of stomatal conductance. Importantly, unlike empirical models,
the optimization model relies on measurable physiological traits as inputs and performs well in predicting responses
to novel environmental conditions without empirical corrections. Incorporating the optimization model in larger scale
models has the potential for improving the simulation of water and carbon cycles.
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Introduction

During the past 60 years, atmospheric CO2 concentration
has increased from 314 to 410 ppm. This accumulation of
greenhouse gas has led to a 0.85 ◦C increase in the global
mean annual temperature (IPCC 2014). The rapid temperature
increase has likely exacerbated drought stress on forests in
many regions, leading to episodes of drought-induced tree

mortality across the globe (Adams et al. 2009, Allen et al.
2010). However, concurrent atmospheric CO2 fertilization may
mitigate the negative temperature effects on drought (Zinta et

al. 2014, AbdElgawad et al. 2015, Gonzalez-Benecke et al.
2017). Fully understanding and predicting the outcomes of

climate change and CO2 fertilization on terrestrial ecosystems
are contingent on models that can be used to predict responses
to novel future environments (Katul et al. 2009, 2010, Medlyn
et al. 2011, Chen et al. 2012, Mcdowell et al. 2013, Mackay
et al. 2015, Anderegg et al. 2017, Tai et al. 2017).

A critical modeling challenge is how to represent the com-
plexity of stomatal behavior that influences plant water loss and
CO2 uptake. To date, most land surface models rely on empirical
representations of stomatal responses to environmental cues
based on curve fitting to existing data sets (Ball et al. 1987,
Leuning 1995, Tuzet et al. 2003, De Kauwe et al. 2013, Walker
et al. 2014, Drake et al. 2017). The empirical models are
computationally efficient and do not require an understanding of
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the complex mechanisms underlying stomatal regulation (Chen
et al. 2012, Hills et al. 2012). However, the fitted parameters of
these models lack physiological or physical identities and cannot
be derived explicitly from measurable plant traits (Anderegg
et al. 2016, Sperry et al. 2017). Consequently, the empirical
approach has a strong risk of being inadequate for accurately
predicting plant responses to novel conditions (Powell et al.
2013, Anderegg et al. 2015, Drake et al. 2017, Trugman et al.
2018b). These models also do not directly predict the impact
of drought stress on the plant’s vascular transport system,
the damage of which is strongly linked to the plants’ drought
responses and mortality risk (Sperry and Love 2015, Sperry
et al. 2016, Adams et al. 2017, Trugman et al. 2018a).

As an alternative to the strictly empirical approach, a goal-
oriented solution for stomatal behavior is potentially powerful,
i.e., assuming that plants optimize water use relative to pho-
tosynthetic gain. A commonly used approach is the Water Use
Efficiency Hypothesis (WUEH), which maximizes the photosyn-
thetic gain for a given amount of water during a given time
period (Cowan and Farquhar 1977). This WUEH model is a
‘constrained-optimization’ problem without an exact solution
(Katul et al. 2009, 2010, Wolf et al. 2016, Buckley et al. 2017)
and often struggles to predict accurate response to [CO2]
and soil moisture (Buckley and Schymanski 2014, Buckley
2017). The WUEH holds that stomata regulate to maintain a
constant marginal water-use efficiency, λ. Katul et al. (2009,
2010) solved the optimal stomatal conductance as a function
of atmospheric humidity, atmospheric [CO2] and λ, recovering
the stomatal response to atmospheric humidity used by a
standard empirical approach (Medlyn et al. 2011). However,
the stomatal responses to atmospheric [CO2] and soil moisture
were unrealistic unless λ is a function of both. Manzoni et al.
(2013) further advanced the theory by incorporating the soil–
plant limitation to leaf water supply and managed to predict
realistic stomatal response to soil moisture, but did not consider
the response to atmospheric [CO2]. Thus, a perpetual challenge
for the WUEH has been the need to predict λ and its dynamics
in response to the full suite of fluctuating environmental stimuli,
including [CO2].

A recently proposed model assumes that the stomata regulate
gas exchange so as to maximize the instantaneous carbon
gain minus the risk of hydraulic failure by embolism formation
(Sperry et al. 2017). The gain and risk of the stomatal opening
are given equal weight, each being normalized to start from
0 at stomatal closure (no hydraulic risk but no carbon gain)
and rise to 1 as stomata open (maximum photosynthesis
but desiccation due to hydraulic failure). This optimization
concept predicts realistic theoretic gas exchange response to
environmental cues including the response to [CO2] and soil
moisture stress (Sperry et al. 2017). The gain–risk model
has been shown to predict stomatal behavior and plant water
status in natural droughts and research garden experiments

(Anderegg et al. 2018, Venturas et al. 2018). Importantly,
the gain–risk model is based on measurable plant physio-
logical traits and hence directly calculates plant physiologi-
cal status for any combination of environmental conditions,
past or future.

The gain versus risk trade-off algorithm has not been fully
tested under elevated [CO2] (Venturas et al. 2018). The atmo-
spheric [CO2], however, is predicted to at least double to
800 ppm by the end of 21st century (RCP8.5, IPCC 2014).
Thus, rigorous testing of the algorithm at elevated [CO2] is
needed to validate the model predictions of plant responses
under novel future environmental conditions.

The goal of the present paper is to evaluate the gain–risk
algorithm with particular emphasis on its ability to predict the
response to short-term changes in [CO2]. Experiments were
conducted in a growth chamber to provide maximal control
of environmental conditions. Water birch (Betula occidentalis
Hook.) was chosen as the study species as it is relatively
vulnerable to drought (Sperry and Saliendra 1994). The plants
were potted to simplify the modeling of rooting depth and soil
water balance. The growth chamber setting also allowed testing
the modeled responses to individual stimuli in isolation ([CO2],
relative humidity (RH) and soil drought), which was not possible
to do in the research garden experiment (Venturas et al. 2018).
The ability of the gain–risk model to predict the experimental
results was compared with a standard empirical stomatal model
(Medlyn et al. 2011) parameterized to the best fit the same
experimental data.

Materials and methods

Plant materials

Water birch (B. occidentalis Hook.) trees were grown from
seedlings in the greenhouse of the School of Biological Sci-
ences, University of Utah (40◦ 45′ 48.75′′ N, 11◦ 50′ 57.66′′
W, 1425 m above sea level) starting in October 2016. Each
tree was grown in a 5-gallon pot with local sandy clay loam
soil. Plants were well watered and day length was regulated
to 10 h from 8:00 a.m. to 6:00 p.m. with supplemental light
(Lucalox LU1000, GE Lighting, East Cleveland, Ohio, USA). In
February 2017, 2 weeks prior to the experiments, 10 trees (1–
1.5 m tall, 2 years old) were moved into a growth chamber
(Model PR-915, Percival Scientific, Perry, Iowa, USA) in order to
acclimate the trees to the growth chamber environment. The
growth chamber was set at the default settings of ambient
CO2 concentration at 400 ppm, air temperature at 25 ◦C,
RH at 55%, light intensity (photosynthetic active radiation,
PAR) at 1000 μmol m−2 s−1 and day length at 10 h (from
8:00 a.m. to 6:00 p.m. local time). Trees were watered with
1 l water at the end of each day until the drought experiment
was initiated.
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Experimental design

Growth chamber trees were subjected to three sequential treat-
ments: ambient CO2 concentration, RH and soil drought. The
responses of leaf xylem pressure and leaf gas exchange were
measured during each treatment. The CO2 treatment was con-
ducted on six trees (trees no. 1–6) at a series of ambient
CO2 concentrations starting at 800 ppm, and stepping down
to 600, 400, 300 and 200 ppm. All other environmental
conditions were kept at default settings. Trees were held at
each concentration for at least 90 min prior to measurements.
The CO2 response was measured from high to low [CO2] in
order to avoid any legacy impact of cavitation due to more
negative leaf xylem pressures at lower [CO2]. At the end of the
experiment, the chamber [CO2] was returned to the default at
400 ppm.

Next, the RH treatment was conducted on six trees (trees no.
1, 2 and 7–10) at a series of RH settings of 75%, 65%, 55%,
45% and 35% while keeping other environmental conditions
at default settings. The actual chamber vapor pressure deficit
(air VPD) was estimated for each gas exchange measurement
based on spot measurements of RH and air temperature. The
humidity response was measured going from high to low RH in
order to avoid the potential legacy of cavitation due to lower leaf
xylem pressure in drier air. A different set of trees were chosen
for the RH (and soil drought, below) treatments to decrease the
reduction in leaf area caused by sampling for pressure chamber
measurements of xylem pressure. After the RH experiment, the
chamber RH was set back to the default 55%.

The final drought response experiment was also performed
on six trees (trees no. 2, 4, 6 and 8–10). Trees were watered
only on the first day and dried for four successive days, with
measurements conducted at the end of the day. After the
measurements, trees were bagged and placed in the dark for
at least 3 h to suppress transpiration and equilibrate leaf xylem
pressure with soil water potential. Leaf xylem pressure was
measured on two to three leaves for each bagged tree and
served as a proxy for the soil water potential at the end of the
day. Trees were then moved back into the growth chamber for
further drought. The growth chamber conditions and timing for
leaf xylem pressure measurements of the CO2, RH and drought
treatments are listed in supplementary data Table S1 (available
as Supplementary Data at Tree Physiology Online).

The tree response to each treatment (CO2, RH, soil drought)
was assessed from measurements of gas exchange and xylem
pressure. Gas exchange measurements were performed only
when the light had been turned on for at least 120 min
and when the growth chamber environment had stabilized
for 90 minutes. The whole-tree transpiration rate (Etree) was
measured with a 0.5 g precision 34 kg range balance (Sartorius
LP34000P, Sartorius Corporation, Goettingen, Germany). The
total weight was recorded to the computer every 10 s for
6–10 min. Whole-tree transpiration rate was estimated from

the slope of the linear regression of weight loss versus time.
Leaf level gas exchange (including photosynthetic rate, stomatal
conductance and leaf temperature, T leaf ) was measured on two
to four leaves on each tree at each treatment stage with a
portable photosynthesis system (Li-6800, LICOR Inc., Lincoln
NE, USA) by setting the Li-6800 chamber temperature at
the growth chamber temperature. One of the leaves used in
the photosynthesis measurement was then used in the leaf
xylem pressure measurement with a pressure chamber (PMS
Instruments, Corvallis, OR, USA; precision ±0.05 MPa) for each
tree at different stages of three treatments. Transpiring leaf
xylem pressures were measured only for three stages in each
treatment in order to minimize the disturbance of decreased
leaf area.

Model description

The gain–risk model (Sperry et al. 2017) was modified for the
input/output of this study (Table 1). The model was coded with
Julia (Julia 0.4.7, NumFocus) and is publicly available (https://
github.com/Yujie-WANG/Published-Codes-Yujie-WANG). The
plant was represented by one canopy sunlit layer, one stem
element, one root layer and one rhizosphere and soil layer in
series. No shaded canopy layer was modeled because there was
no significant leaf shading for the small saplings (1.0–1.5 m tall)
in the growth chamber, and only one root layer was used due to
the homogeneous soil moisture in a small pot. Leaf temperature
was not modeled in this version because the main purpose of
the study was to test the accuracy of the optimization algorithm
itself rather than the additional energy balance routine that
predicts T leaf in the full version (Sperry et al. 2017, Venturas
et al. 2018). Instead, the T leaf required by the model was an
input and was averaged from the T leaf measurements for each
tree. The model simulations assumed that cavitation of xylem
conduits was irreversible (no xylem refilling). Examples of how
xylem water pressure and hydraulic conductivity loss respond
to the environmental cues can be found in Figure S1 (available
as Supplementary Data at Tree Physiology Online).

The gain–risk model calculates the relative photosynthetic
gain and hydraulic risk of stomatal opening at each time step.
The gain is the photosynthetic rate relative to the maximum
possible achieved by stomata opening at that time step. Maximal
carboxylation rate at 25 ◦C (Vcmax), maximal electron transport
at 25 ◦C (Jmax), air temperature, T leaf , PAR and ambient [CO2]
are the necessary inputs for computing the photosynthetic
gain (Table 1). The risk function measures the relative loss of
hydraulic conductance at the end of the transpiration stream,
which rises from 0 at stomatal closure to 1 for complete failure
at the runaway cavitation. Necessary inputs include the soil
moisture, rhizosphere resistance, vulnerability curves (VCs) and
maximal conductances of the root, stem and leaf elements of
the flow path, as well as the leaf area per basal area (Table 1).
Once the gain and risk functions are calculated as a function
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Table 1. List of symbols, definitions and status as model input or output. Note that leaf temperature and soil water potential are used as input in
this model to test the gain–risk algorithm while they are used as outputs in other versions of the model (Venturas et al. 2018).

Symbol Definition Unit Input/output

A Photosynthetic assimilation, photosynthetic rate μmol CO2 m−2 s−1 Output
Ca Atmospheric CO2 concentration ppm Input
Ci Intercellular CO2 concentration ppm Output
D Leaf-to-air vapor pressure deficit kPa –
Etree Transpiration rate of the tree per basal area kg h−1 m−2 Output
Jmax Maximal electron transport at 25 ◦C μmol CO2 m−2 s−1 Input
Kmax Maximal tree hydraulic conductance kg h−1 MPa−1 m−2 Input
K rhizo Maximal tree rhizosphere conductance kg h−1 MPa−1 m−2 Input
La:Ba Leaf area to basal area ratio m2 m−2 Input
MAPE Mean absolute percent error % –
PAR Photosynthetic active radiation μmol m−2 s−1 Input
Pleaf Leaf xylem pressure under light condition MPa Output
Ppd Predawn leaf xylem pressure, a proxy for soil water potential MPa –
Psoil Soil water potential MPa Input
RH Relative humidity % –
T leaf Leaf temperature ◦C Input
VC Xylem vulnerability curve to cavitation – Input
Vcmax Maximal carboxylation rate at 25 ◦C μmol CO2 m−2 s−1 Input
VPD Vapor pressure deficit in the air kPa Input
Weibull B Fitting parameter of the VC Weibull function −MPa Input
Weibull C Fitting parameter of the VC Weibull function – Input

of stomatal opening, the optimization algorithm finds the point
at which the gain minus risk difference is maximized. This
predicts the gas exchange and water status parameters (e.g.,
photosynthetic rate, transpiration rate, leaf xylem pressure) at
the time step. Model details can be found in Sperry et al. (2017)
and Venturas et al. (2018).

Measuring model input parameters

Photosynthesis parameters Vcmax and Jmax at 25 ◦C were
obtained from the measured relationship between the pho-
tosynthetic rate (A) and intercellular CO2 concentration (Ci),
A–Ci curves. These curves were obtained for each tree in the
growth chamber prior to each experimental treatment. For each
curve, the net photosynthetic rates were measured at the leaf
temperature of 25 ◦C and light intensity of 1000 μmol m−2 s−1

under a series of CO2 concentrations: 50, 100, 150, 200, 300,
400, 500, 600, 800, 1000, 1200, 1400, 1600, 1800 and
2000 ppm. The dark respiration rate was then measured at the
leaf temperature of 25 ◦C and PAR = 0. The gas exchange
measurements were done with a portable photosynthesis sys-
tem (Li-6800). A–Ci curves were fitted to obtain the Vcmax

and Jmax with the scipy.optimize.leastsq module in Python 3.6.5
(code provided with the gain–risk model). A total of 43 A–Ci

curves were constructed for the 10 trees and the average Vcmax

and Jmax for each tree were calculated and used as model
input. Ambient [CO2] and light were recorded from the growth
chamber. Leaf temperatures were recorded from the Li-6800
where the inlet air temperature was set to the chamber air
temperature.

Vulnerability curves for the root and stem Vulnerability curves
of root, stem and leaf were constructed from well-watered,
greenhouse-grown trees of the same cohort for the growth
chamber experiments. Branches ∼80 cm long and roots were
harvested, wrapped with black plastic bags and transported to
the lab within 5 min of the collection. Stem and root segments
16–20 cm long were cut under water. The segments were
vacuum infiltrated in 10 mM KCl for 30 min to remove the
emboli in vessels. The segments were trimmed to 13.8 cm and
maximal hydraulic conductivity was measured with a conductiv-
ity apparatus (Sperry et al. 1988). Stem and root segments
were then spun in a custom built rotor in a centrifuge for
10 min to introduce embolism under different pressures (Alder
et al. 1997). Hydraulic conductivity was measured immediately
after taking the segment out of the centrifuge by correcting
the background flow (Hacke et al. 2000, Torres-Ruiz et al.
2012). Each segment was only used to measure the maximal
conductivity and conductivity after spinning in the centrifuge
(single spin method, Hacke et al. 2015). A total of 39 stem
segments and 24 root segments were used to construct the VCs
for stem and root, respectively. Root and stem VCs were fitted
to the Weibull function, k = kmax × exp[−(P/B)∧C], where kmax

is the maximal hydraulic conductance of the element, B and C
are the fitted Weibull parameters and P is the xylem pressure in
MPa.

Vulnerability curve for the leaf Potted trees in the greenhouse
were dried to different leaf xylem pressures and then
transported to the lab. Leaf xylem pressure was measured
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on two to three bagged leaves for each stressed tree and then a
leafy branch (basal diameter >5 mm) was harvested from the
tree. Leaf edges were trimmed to expose the minor veins. The
hydraulic conductance of the branch (kbr) was measured using
the vacuum chamber method (Kolb et al. 1996). Then leaves
were cut from the branches at the proximal base of the petiole
and hydraulic conductance of the stem (kst) was measured
under a series of vacuum pressures. The hydraulic conductance
of the leaf xylem was computed as klf = 1/(1/kbr−1/kst).
The leaf VC was constructed with 31 branches by plot-
ting the klf versus leaf xylem pressure and fitting the
Weibull function.

Maximal tree hydraulic conductance and its partitioning
The whole-tree Kmax per basal area represents the hydraulic
conductance in the absence of any embolism. It was back-
calculated from measured tree conductance under well-watered
conditions, based on the VCs (Sperry and Love 2015, Ven-
turas et al. 2018). Tree conductance (per growth chamber
tree) was the quotient of measured midday transpiration rate
and the difference between midday leaf xylem pressure and
predawn leaf xylem pressure. The Python script to solve for Kmax

from measured tree conductance can be found along with the
model code.

The Kmax had to be partitioned into root, stem and
leaf components (the rhizosphere resistance under wet soil
conditions is negligible). The fraction of tree hydraulic resistance
(reverse of conductance) in the roots was computed as
(Pmd,b − Ppd)/(Pmd − Ppd), where Ppd is the predawn
leaf xylem pressure, Pmd,b is midday bagged leaf xylem
pressures of leaves inserted near the root crown and
Pmd is midday xylem pressure of transpiring leaves in the
canopy. The stem versus leaf resistance ratio was obtained
from the vacuum method, i.e., klf /kst. The resistance ratios
of the stem and leaf to the whole tree were calculated
as (Pmd − Pmd,b)/(Pmd − Ppd) × klf /(klf + kst) and
(Pmd − Pmd,b)/(Pmd − Ppd) × kst/(klf + kst), respectively.

Leaf area and stem area After the experimental treatments
were concluded in the growth chamber, the 10 experimental
trees were cut to measure the leaf area and stem area. All the
shoots were cut from the trees; leaf area and stem area were
measured to obtain the leaf area to stem area ratio (La:Ba). Leaf
areas were measured with a leaf area meter (Li-3100, LICOR
Inc. Lincoln NE, USA). Three out of 10 trees (trees no. 3, 5 and
7) had a smaller La:Ba while 7 out of 10 trees (trees no. 1, 2, 4,
6 and 8–10) had a bigger La:Ba, so two different average ratios
were computed for these two subsets and used as model input.
Stem basal area was summed from the shoots in the pot. The
average leaf area per basal area and stem basal area per tree
were used to convert between leaf area-specific versus whole-
tree transpiration rate.

Rhizosphere resistance The hydraulic conductance in the
rhizosphere (K rhizo) cannot be measured directly. The rhi-
zosphere conductance was obtained from the value that
minimized the sum of standardized square error (i.e., the sum
of [measured − modeled/mean measured]2) of leaf xylem
pressure, transpiration rate and photosynthetic rate across
all comparisons in the CO2, RH and drought treatments (90
observations in total).

Soil moisture For the CO2 and RH treatments, ‘predawn’ leaf
xylem pressure (a proxy for soil water potential) was measured
with a pressure chamber in the early morning before the
lights were turned on. Trees were bagged during the night to
ensure the suppression of nocturnal transpiration. The Ppd was
measured for each tree in the CO2 and RH treatments and was
assumed to be constant throughout the treatment day. For the
drought treatment, the soil water potential was assessed from
‘predawn’ xylem pressures measured at the end of each drought
day as already described.

Testing the gain–risk model

The gain–risk model was run for each tree for the same set
of environmental conditions corresponding to the measurement
of the tree’s response to CO2, RH or drought. The predicted
transpiration rate (Etree), photosynthetic rate (A) and leaf xylem
pressure (Pleaf ) were compared with experimental observations
to evaluate the model performance in predicting the stomatal
responses to environmental cues. The comparison was quanti-
fied by calculating the mean absolute error (MAE) and mean
absolute percentage error (MAPE; mean absolute difference as
a percentage of the observed mean) for each comparison of A,
Etree and Pleaf for each treatment. Errors were equally weighted
across the three variables by studentizing each value (subtract-
ing the observed mean and dividing by the observed standard
deviation). Model performance per treatment (CO2, RH, soil
drought) was averaged from the MAPE for the A, Etree and Pleaf

response obtained for each treatment. Model performance per
variable was the variable’s MAPE averaged over all treatments.
The overall model performance was evaluated by the MAPE
averaged across all three variables and treatments.

Comparison with an empirical model

For comparison with the widely used empirical approach for
modeling plant water status and gas exchange, a standard
version of Ball–Berry–Leuning–Medlyn-type model was used
(Ball et al. 1987, Leuning 1995, Medlyn et al. 2011). For the
empirical model, stomatal conductance, gs, was predicted as

gs = g0 + 1.6A
Ca

•
(

1 + g1√
D

)
•

(
Psoil − Pmin

Pmax − Pmin

)
, (1)

where Ca is atmospheric [CO2], D is the leaf-to-air vapor
pressure deficit, g0, g1, Pmin and Pmax are four parameters
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Figure 1. Observations and gain–risk model predictions in the CO2, humidity and drought treatments. The blue numbers show the observations while
the red numbers show the model prediction of each tree (identification number from 1 to 10). Panels (A)–(C) show the observed and modeled
photosynthetic rate (A). Panels (D)–(F) show the observed and modeled tree transpiration (Etree). Panels (G)–(I) show the observed and modeled
leaf xylem pressure (Pleaf ). The VPD is the vapor pressure deficit in the air.

fitted to the data and Psoil is the soil water potential (predawn
leaf xylem pressure was the proxy for Psoil). Standard empirical
stomatal conductance models lack a soil moisture term (e.g.,
the right-hand bracketed term; Ball et al. 1987, Leuning 1995,
Medlyn et al. 2011), which is added to account for drought
stress in large-scale ecosystem models (Trugman et al. 2018b).
Equation 1 without the soil moisture term is consistent with
the WUEH (Cowan and Farquhar 1977) assuming that RuBP
regeneration governs the photosynthesis and marginal water
use efficiency is independent of Ca and Psoil. The solution of Eq.
1 must also satisfy the physiological relationship between gs and
A, which was assumed to be identical to the gain function for
consistency with the gain–risk model (gs and A were calculated
from the intersection of the A–Ci curve and Eq. 1). Similarly, gs

was linked to Etree and Pleaf as dictated by the risk function.
The fitting parameters were optimized to minimize the sum
of studentized MAE (measured versus modeled A, Etree and
Pleaf ; values were studentized by subtracting the observed mean

and dividing by the observed standard deviation) for combined
[CO2], RH and drought treatments. Once parameterized, Eq. 1
was numerically solved for the gs and associated A, Etree and
Pleaf that satisfied the gain and risk function specific to each tree
and measurement period. The code for the empirical model is
available at https://github.com/Yujie-WANG/Published-Codes-
Yujie-WANG.

Results

Plant traits and model inputs

Mean Vcmax for each tree ranged from 12.8 to 96.6 μmol m−2 s−1

and mean Jmax ranged from 24.0 to 203.0 μmol m−2 s−1. Jmax

was linearly correlated with Vcmax (R2 = 0.992, N = 43) with a
ratio of 1.86 (see Figure S2 available as Supplementary Data at
Tree Physiology Online). Trees no. 3, 5 and 7 had significantly
lower leaf area to basal area ratio averaging 2648 m2 m−2

compared with the rest of the trees, which averaged 5663
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m2 m−2, and the model was parameterized accordingly. The
average percentage of tree hydraulic resistance in root, stem
and leaf pathways was 53.7%, 24.3% and 22.0%, respectively.
Estimated rhizosphere conductance was 6 × 108 times the
Kmax of each tree (yielding an average rhizosphere resistance
of 36.2% over the full range of soil water potential from zero

to the value at which gas exchange would cease). The Kmax

of each tree ranged from 560 to 1970 kg h−1 MPa−1 m−2.
Roots and leaves were more vulnerable to cavitation than
the stems with the P50 (xylem pressure at 50% loss of
conductance) of −1.14 MPa and −1.10 MPa, respectively,
compared with the −1.97 MPa in stems. The traits used
for modeling each tree can be found in the supplementary
data (see Table S2 available as Supplementary Data at Tree

Physiology Online).

Performance of the gain–risk model

In the CO2 experiment, as CO2 concentration was decreased
from high (800 ppm) to low (200 ppm), the observed
photosynthetic rate decreased (P < 0.001, linear regression,
Figure 1A, blue data), whole tree transpiration increased non-
significantly (P = 0.13, linear regression, Figure 1D, blue data)
and leaf xylem pressure became more negative (P = 0.03, linear
regression, Figure 1G, blue data). The gain–risk model tracked
these measured trends well (Figure 1A,D, and G, red data). The
standardized MAPE was 25.0%, averaged across all photo-
synthesis, transpiration and leaf xylem pressure comparisons
(Figure 2A, Table 2). The error was lower for the predictions
of transpiration and xylem pressure than for photosynthesis
(Table 2). The linear regression slope for modeled versus
measured transpiration was not significantly different from 1
(P = 0.14, Table 2), and the rest of the variable sets had
slopes significantly shallower than 1 (P < 0.001, Table 2).

In the RH treatment, as RH was decreased from high to low
(from 75% to 35%, corresponding to an atmospheric VPD
ranging from 0.79–2.06 kPa), the observed photosynthetic rate
decreased (P < 0.001, linear regression, Figure 1B, blue data)
while tree transpiration rate increased (P = 0.05, linear regres-
sion, Figure 1E, blue data) and leaf xylem pressure became
more negative (P = 0.84, Figure 1H, blue data). The gain–risk
model tracked these trends (Figure 1B, E and H red data) with
an overall MAPE of 21.9% (Figure 2B). The error was greatest
for photosynthesis and least for xylem pressure (Table 2). The
linear regression slope for each modeled versus measured
variable set (i.e., A, Etree, Pleaf and All) was significantly lower
than 1 (P < 0.001, Table 2).

In the soil drought treatment, as predawn xylem pressure
fell from −0.5 MPa to −2.3 MPa during the drought, the
observed photosynthesis, transpiration and leaf xylem pressure
fell (P < 0.001, linear regression, Figure 1C, F and I, blue data).
These trends were predicted by the gain–risk model (Figure 1C,
F and I, red data), but the percentage error was greater at

41.9% (Figure 2C). The percentage error was larger for
photosynthesis and transpiration than xylem pressure (Table 2).
The larger percentage error in the drought treatment compared
with the CO2 and RH treatments resulted from the lower
mean photosynthesis and transpiration rates measured under
drought stress. In terms of average absolute value of the
error, the drought treatment was comparable to the [CO2] and
RH treatments. The linear regression slopes for the modeled
versus measured transpiration and leaf xylem pressure were not
significantly different from 1 (P = 0.58 and 0.13, respectively,
Table 2), but the slopes for photosynthesis and combined
variable set were significantly lower than 1 (P < 0.001,
Table 2).

Pooling the CO2, RH and soil drought treatments, the overall
MAPE for the gain–risk model was 26.8% (Figure 2D), with
more error in the photosynthesis prediction (38.1%) than the
xylem pressure prediction (14.5%). Transpiration MAPE was
intermediate (27.8%, Table 2). The model predictions fell close
to the 1:1 line that was also within the 95% confidence limits
of the regression. A linear regression of the studentized model
prediction versus observations had slope lower than 1 for each
treatment, each variable and combined treatments (P < 0.01,
Figure 2A–D, Table 2).

Comparison with the empirical model

Pooling across all treatments and variables, the gain–risk
model predicted observed tree responses more skillfully
(MAPE = 26.8%) than the Ball–Berry–Leuning–Medlyn
empirical model (MAPE = 37.5%; Figure 2D and H). On a
per treatment basis, the gain–risk model gave lower errors for
all the [CO2], RH and drought responses (Figure 2A–C, E–G).
Per variable, the gain–risk model better predicted the pho-
tosynthesis, whole-tree transpiration and leaf xylem pressure
for combined treatments. The empirical model only performed
slightly better for photosynthesis in the [CO2] treatment and
whole-tree transpiration in the drought treatment (Table 2).
A linear regression of the studentized empirical fitting had
slope lower than 1 for each treatment and combined treatments
(P < 0.001, Figure 2E–H, Table 2). Per variable, only the linear
regression for leaf xylem pressure in the RH, drought and all
treatments combined showed slopes not significantly different
from 1 (P = 0.34, 0.91 and 0.76, respectively, Table 2). In the
RH treatment, the empirical model underestimated A, Etree and
Pleaf as the modeled values were below the 1:1 line (Figure 2F).

Discussion

The gain–risk optimization model was able to capture the [CO2],
air humidity and soil drought responses in novel conditions,
suggesting that patterns of tree-level gas exchange are consis-
tent with an optimization of carbon gain and hydraulic risk. The
gain–risk model showed better overall predicting power than
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Trait-based model predicts stomatal behavior 1423

Figure 2. Comparison of model predictions of studentized photosynthesis (A, green circle), transpiration (Etree, blue square) and leaf xylem pressure
(Pleaf , red triangle) versus experimental observations. Panels (A)–(D) show the gain–risk model predictions for CO2, RH, drought and all treatments,
respectively. Panels (E)–(H) show the empirical model fittings for CO2, RH, drought and all treatments, respectively. Solid black lines are the 1:1
relationship. Dashed lines are the regression lines. Dotted lines are the 95% confidence intervals for the linear regression. The mean absolute
percentage error and the regression statistics are listed in Table 2.

the empirical model, which had the advantage of freely tuning
four parameters to best fit the data. The only parameter adjusted
post-hoc in the gain–risk approach was the rhizosphere conduc-
tance, which is a difficult trait to measure. This trait selectively
influences the model under drought conditions because only
in drying soil does rhizosphere hydraulic conductance become
limiting (Sperry et al. 1998, Sperry and Love 2015, Wolfe et al.
2016). Thus, the post-hoc adjustment of the rhizosphere con-
ductance had a minimal influence on the good fits observed
in the well-watered CO2 and RH treatments. The advantage of
having all model parameters associated with identifiable traits
is that this makes it easier to assign a value and uncertainty to
them a priori when true predictions are required (as opposed
to the hind-casting that is possible during model validation).
One can also better understand the physiological basis for
uncertainties in model projections when all inputs are linked
to trait and process. At the same time, it is important to
restrict the model to well-understood trait and process, or
risk regression to post-hoc fitting that becomes equivalent to
the empirical approach. For example, it can be conceptually
useful to incorporate phloem transport in an optimization model,
but this approach has the downside of adding a suite of
currently poorly known parameters (Nikinmaa et al. 2013,
Huang et al. 2018).

The present results add to the prior validations of the gain–
risk algorithm in controlled plantation experiment with aspen
(Populus tremuloides; Venturas et al. 2018), and meta-analysis
of gas exchange data from a variety of species (Anderegg et
al. 2018). The work adds to this body of literature and is the
first testing of the model’s CO2 response to both elevated and
decreased CO2 concentrations. The overall error (26.8% for
all treatments) was comparable to that for the Venturas et al.
(2018) study (27.9% for control and drought treatments).
Although the percentage error was higher for the drought
treatment (41.9%), this was owing to lower mean values
rather than to a greater absolute error. The MAEs for
water birch (A: 2.83, Etree: 135.52 and Pleaf : 0.23 for
drought treatment, units in Table 1) were comparable to
the MAEs for aspen in the Venturas study (A: 2.3, Etree:
151.2 and Pleaf : 0.4, units in Table 1). An advantage of
the growth chamber experiments was the ability to isolate
the model error for each individual driver ([CO2], RH and
soil drought). Similar absolute error values indicated that the
gain–risk model represented all responses with equal fidelity
(Table 2).

The slope of the model predictions and observations in
Figure 2D was significantly lower than 1, suggesting that
the model either underestimated gas exchange rates under
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1424 Wang et al.

Table 2. The comparison of gain–risk model and empirical model predictions. MAE (units for A, Etree and Pleaf reported in Table 1) and MAPE
stand for mean absolute error and mean absolute percentage error, respectively. The row ‘slope’ denotes the slope of the regression between
observed values (x) and modeled values (y). The row ‘slope = 1’ denotes the P-value for the linear regression slope being different from 1.
Units as in Table 1.

Treatment/Model Predicted

A Etree Pleaf All

CO2/Gain–risk MAPE 41.1% 17.8% 16.2% 25.0%
MAE 4.25 78.83 0.18
Slope 0.62 ± 0.11 0.81 ± 0.12 0.25 ± 0.15 0.61 ± 0.08
Slope = 1 0.00 0.14 0.00 0.00
R2 0.527 0.606 0.140 0.441

CO2/Empirical MAPE 40.7% 49.1% 26.7% 38.8%
MAE 4.21 217.29 0.30
Slope 0.63 ± 0.11 0.36 ± 0.16 −0.23 ± 0.24 0.33 ± 0.12
Slope = 1 0.00 0.00 0.00 0.00
R2 0.539 0.155 0.059 0.094

RH/Gain–risk MAPE 31.5% 23.5% 10.7% 21.9%
MAE 3.50 111.66 0.12
Slope 0.45 ± 0.08 0.25 ± 0.07 0.71 ± 0.11 0.43 ± 0.07
Slope = 1 0.00 0.00 0.02 0.00
R2 0.563 0.287 0.708 0.332

RH/Empirical MAPE 46.9% 41.7% 14.0% 34.2%
MAE 5.20 198.18 0.16
Slope 0.45 ± 0.07 0.37 ± 0.12 0.85 ± 0.16 0.51 ± 0.07
Slope = 1 0.00 0.00 0.34 0.00
R2 0.632 0.237 0.651 0.382

Drought/Gain–risk MAPE 43.0% 65.4% 17.3% 41.9%
MAE 2.83 135.52 0.23
Slope 0.44 ± 0.10 0.91 ± 0.17 0.85 ± 0.10 0.71 ± 0.09
Slope = 1 0.00 0.58 0.13 0.00
R2 0.421 0.544 0.849 0.483

Drought/Empirical MAPE 45.5% 59.2% 21.7% 42.1%
MAE 2.99 122.56 0.29
Slope 0.36 ± 0.08 0.45 ± 0.12 1.02 ± 0.20 0.55 ± 0.09
Slope = 1 0.00 0.00 0.91 0.00
R2 0.446 0.373 0.658 0.381

All/Gain–risk MAPE 38.1% 27.8% 14.5% 26.8%
MAE 3.58 106.58 0.17
Slope 0.56 ± 0.07 0.54 ± 0.05 0.79 ± 0.07 0.60 ± 0.04
Slope = 1 0.00 0.00 0.01 0.00
R2 0.463 0.541 0.690 0.506

All/Empirical MAPE 44.2% 47.6% 20.7% 37.5%
MAE 4.17 181.80 0.25
Slope 0.51 ± 0.06 0.25 ± 0.07 0.95 ± 0.15 0.51 ± 0.05
Slope = 1 0.00 0.00 0.76 0.00
R2 0.479 0.153 0.455 0.304

favorable conditions or overestimated them under stressful
conditions. The results suggest that the latter case applies
to the water birch because the model predicted leaf xylem
pressure became overly negative under stressed conditions
(Figures 1F and I, and 2C). This behavior would occur if the
measured leaf VC was more resistant than the actual leaf VC. An
overly resistant leaf VC would lead to more negative predicted
Pleaf and higher predicted transpiration at any soil moisture
condition (Figures 1F and I, and 2C). The measured leaf VC

was for leaf xylem only, and so excluded potential declines in
leaf hydraulic conductance in the extra-xylary flow path. The
response of extra-xylary hydraulic conductance to water stress
requires more quantitative investigation (Bartlett et al. 2014,
Meinzer et al. 2016, Scoffoni et al. 2017) and may improve
model performance. Incorporating the mesophyll conductance
in the model may also improve the predictions (Dewar et al.
2018, Flexas et al. 2008), but there are still knowledge gaps
that prevent incorporating it in the gain–risk model such as how
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Trait-based model predicts stomatal behavior 1425

to quantifiy the change of mesophyll conductance in response
to the environment.

The empirical approach performed less satisfactorily com-
pared with the trait-based gain–risk model, especially in pre-
dicting Etree and Pleaf in the CO2 and RH treatments (Table 2).
The underperformance of the empirical model was despite
the advantage of fitting model parameters to the observed
data set and using the same linkage between gs, A, Etree and
Pleaf employed in the gain–risk model (i.e., the gain and risk
functions). Either the model ‘parameters’ are not constants
as intended or the empirical equation itself does not fully
capture the complexity of the stomatal response to CO2, RH
and soil drought. Even if an empirical approach had been as
successful as the gain–risk model, as was the case in the aspen
study of Venturas et al. (2018), the gain–risk model has the
advantage of being parameterized by measurable traits with
known uncertainties. The gain–risk approach also capitalizes on
the known linkage between stomatal behavior and physiological
traits (Pataki et al. 1998, Sperry 2000, Hubbard et al. 2001,
Santiago et al. 2004).

While the gain–risk model can predict well the stomatal
behavior based on measured traits, the predictions may only
be relevant for short timeframes when these measured traits
stay unchanged. Acclimation such as changes in leaf respiration,
leaf area per basal area, photosynthetic capability and rooting
depth has the potential to change plant response over time to
the long-term changes in [CO2], temperature and other factors
(Eissenstat et al. 2000, Ainsworth and Long 2005, Guswa
2008). The fact that the gain–risk model is trait-based allows
for modeling these acclimation processes as they become better
understood. In conclusion, the gain–risk model appears to hold
promise for improving predictions of forest health in response
to a changing climate.
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