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Abstract Herein we review the current state-of-the-art
of plant hydraulics in the context of plant physiology,
ecology, and evolution, focusing on current and future
research opportunities. We explain the physics of water
transport in plants and the limits of this transport system,
highlighting the relationships between xylem structure

and function. We describe the great variety of techniques
existing for evaluating xylem resistance to cavitation. We
address several methodological issues and their connec-
tion with current debates on conduit refilling and
exponentially shaped vulnerability curves. We analyze
the trade-offs existing between water transport safety
and efficiency. We also stress how little information is
available on molecular biology of cavitation and the
potential role of aquaporins in conduit refilling. Finally,
we draw attention to how plant hydraulic traits can be
used for modeling stomatal responses to environmental
variables and climate change, including drought
mortality.
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INTRODUCTION

Plants require large amounts of water to live and grow.
Photosynthesis itself consumes one molecule of water
for eachmolecule of CO2 fixed. However, for eachwater
molecule used in photosynthesis, hundreds more are
lost by transpiration through stomata, which must be
open to uptake CO2. As a result, the water use efficiency
(WUE) of plants, defined as the ratio between the rate
of CO2 assimilated and H2O transpired by the plant, is
very low and ranges between 0.5–10mmol CO2 (mol
H2O)

�1 (Nobel 1991). Ninety percent of trees with an
average height of 21m have maximum transpiration
rates between 10 and 200 L of water per day
(Wullschleger et al. 1998). A large overstory Amazonian
rainforest tree can use up to 1,180 L of water per day
(Jordan and Kline 1977). Such is the amount of water

transpired by plants that across ecosystems transpira-
tion returns an average of 39% of incident rain back to
the atmosphere and, therefore, is an important factor in
the global water cycle (Schlesinger and Jasechko 2014).

Vascular plants have evolved a highly specialized
vascular tissue, the xylem, which exploits a passive,
physical mechanism for supplying these large amounts
of water to the photosynthetic organs (Sperry 2003;
Lucas et al. 2013). No metabolic energy is used to
generate the driving force for fluid flow, and the xylem
conduits that carry the transpiration stream are dead
cell wall skeletons. Indeed, the low WUE of plants
would make an active transport mechanism unsustain-
able by creating a negative energy balance. Despite
being a passive, physical process that occurs in dead
cells, vascular water transport has been termed the
“backbone of plant physiology” (Brodribb 2009), and
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the field of “plant hydraulics” has emerged as an
increasingly dominant arm of plant water relations
research.

In this review we highlight current research in plant
hydraulics in the context of plant physiology, ecology,
and evolution. We address methodological issues, and
focus on current and future research opportunities.
However, we first explain the physics of xylem water
transport in plants and the limits of the system. Though
simple, the transport mechanism and its relation to
xylem anatomy is easily misunderstood.

PHYSICS AND ANATOMY OF WATER
TRANSPORT IN PLANTS

The ascent of sap in plants is explained by the
“cohesion-tension” theory (Dixon and Joly 1895;
Pickard 1981). Details on the origin and the development
of this theory were reviewed by Brown (2013). The
conceptual basis of this theory is simple: Water
molecules that evaporate from the leaves are replaced
by others in the upstream liquid phase, which are pulled
up the plant by capillary forces (Figure 1). These forces
arise at air-water menisci formed between the apo-
plastic water in the pores ofmesophyll cell walls and the
intercellular air space (Figure 1B–E). Consider first the
stationary situation where there is no transpiration, and
gravity is the only external force acting on themeniscus.
Eachmeniscus is anchored to the cell wall surface by the
adhesion of liquid water to the hydrophilic wall via
hydrogen bonding. Hydrogen bonding also creates the
surface tension, which suspends the free surface of the
meniscus against gravity. These capillary forces in the
meniscus create a negative (sub-atmospheric) liquid
pressure throughout the bulk fluid and balance the
gravitational force. When transpiration is added to this
situation, water evaporates from the meniscus whose
edges remain firmly anchored by adhesion. The
consequent tendency for the meniscus to increase its
concavity and “sag” is resisted by surface tension,
which holds the surface taut. The pull of surface tension
on the meniscus is communicated to the bulk liquid,
which experiences a further drop in pressure, which
pulls water against frictional resistance through the
continuous liquid phase flow path in cells and xylem
conduits from the soil. Using an analogy with solids, the
liquid water column acts like a rope under “tension”

created by the “cohesion” of hydrogen-bonding
properties that create capillary force. The “tension”
term is by analogy because it is a directionally-
dependent tensor quantity descriptive of forces acting
on solids or surfaces, whereas forces in bulk liquid phase
act as pressure: a scalar quantity which is directionally
independent. These forces balance gravity, friction, and
the capillary forces at the soil end of the hydraulic
“rope”, which resist drainage of the soil pore space
(Figure 1A).

The cohesion-tension mechanism requires signifi-
cantly negative pressures to operate. Gravitational
force is generally the smallest contributor to the
pressure gradient generated within the xylem, result-
ing in a pressure drop of approximately �0.01MPa
m�1 (e.g., �0.3MPa in a 30m tall tree; Figure 2). The
most important factor is the soil water potential,
because the plant cannot have a xylem pressure that
is above the water potential of its active rooting zone.
The xylem sap pressure (Px) must be lower or equal to
the total soil water potential (Px�osmoticþpressure
þmatric components) because the incoming water is
filtered through cell membranes at the root endoder-
mis and in some cases at other points in the root
(Steudle 2000). Typical soil water potentials that allow
plant survival range from 0 in wet soils to below
�10MPa in dry or very saline soils. The lowest xylem
pressures are generally found in plants rooted in dry
or saline soils, and reach approximately �14MPa
(Jacobsen et al. 2007; Venturas et al. 2016a). The final
contributing factor to xylem pressure is friction, which
requires a steady-state pressure drop equal to the
transpiration rate (E) divided by the hydraulic
conductance of the soil-to-leaf flow path (k). The
frictional pressure drop is typically between 1 and
2MPa in trees under wet soil and dry air conditions
that maximize E. Herbs generally experience some-
what smaller pressure drops. The frictional pressure
drop is the one component of xylem pressure gradient
that plants can actively influence via stomatal control
of E at short term time scales (Figure 2). Stomata
typically close partially in drier air to limit E and the
associated pressure drop. This closure is accentuated
in dry soil. In extreme soil drought, stomata are likely
to close completely.

The xylem functions as a pathway of high hydraulic
conductance that minimizes the frictional pressure drop
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Figure 1. Cohesion-tension mechanism of ascent of sap in plants
(A) Schematic water column from soil to leaf cells (adapted from Sperry 2011). Liquid water is pulled (solid blue
arrows) from the soil to the evaporating surface of leaf cell walls by negative water pressure (Px< 0) created by
cell wall capillary forces (red Fc arrow). This force moves water through the mesophyll (Mc) from the xylem via a
symplastic and transmembrane pathway (Sp), an apoplastic pathway (Ap), or a combination of both. Water
moves up the xylem through a network of conduits that must be full of water to function (not gas-filled or
“embolized”). Water moves through root cells (Rc) from soil to root xylem via Ap and Sp pathways except where
it is filtered at the endodermis (En) because the casparian strip (Cs) blocks the apoplastic pathway. The
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from the finest absorbing roots to the vein endings in
leaves. The mature xylem conduits are dead and hollow,
eliminating the obstacles of cell membranes and
protoplasts. They are wide (approximately 5–500mm
in diameter) and long (mm to m) to minimize flow
resistance, and their walls are lignified and with thick
secondary walls to withstand collapse by their internally
negative pressure (Hacke et al. 2001a; Sperry et al. 2006).
The ancestral tracheid type of conduit develops from a
single cell and is limited to generally less than a cm in
length (rarely longer), whereas the derived vessel of
angiosperms and certain other groups develops from a
coordinated chain of cells (vessel elements) which
partially or wholly lose their common end-walls (perfo-
ration plates). Vessels can be many cm to m in length
(Zimmermann 1983; Jacobsen et al. 2012). Xylem
conduits of either type are connected to each other by
pits in thesecondary cellwall that haveapit“membrane”
separating the conduit lumens (Figures 1F–I, 3). This is
not a cell membrane (themature conduits are dead), but
rather the modified primary cell walls and intervening
middle lamella of the adjacent conduit cells. As will
shortly be seen, although pit membranes create flow
resistance, they play a crucial role in xylem transport
safety.

Xylem conduits are “born” full of water, and they
must stay full to function in carrying the transpiration
stream. If they become gas filled, they are much too
wide in diameter to hold an air-water meniscus against

typical negative water pressures in xylem. The most
negative pressure that a meniscus can generate
(Pmin, Pa, relative to atmospheric) in a cylindrical
capillary is determined by:

Pmin ¼ � 4G cos uð Þ
Dc

ð1Þ

where G is the surface tension (Nm�1), u is the contact
angle between the liquid and surface of the capillary
(a measure of adhesion), and Dc is the capillary diameter
(m). The negative symbol indicates that water pressure
is subatmospheric. If pressure drops below Pmin

“capillary failure” occurs and the liquid column recedes.
Cellulose and hemicelluloses microfibers (the main cell
wall components) are hydrophilic components with
small u (<60 degrees) and pores ranging 1–10 nm. Sap G

is usually considered to be equal to that of pure water G
(Christensen-Dalsgaard et al. 2011). As at 20 °C water G is
0.07275 Nm�1 (Vargaftik et al. 1983), if we considered a
u¼ 60 degrees, typical cell wall pores can generate a
Pmin of �14.5 to �145.5MPa (for 10 and 1 nm,
respectively). In contrast, typical lumen diameters of
xylem conduits range from 5 to 500mm; therefore, a
gas-water meniscus spanning a xylem conduit would
only be able to withstand xylem water pressures
above�0.03MPa for the narrower conduits (–2.9 � 10�4

MPa for the wider ones; gas pressure Pa¼ 0MPa). As
xylem pressures are typically more negative than
�0.03MPa capillary force generated in the conduit

epidermis (Ep) and stomata control H2O vapor loss (broken blue arrow) and CO2 uptake (broken brown arrow)
by diffusion from higher to lower partial pressures. (B) Leaf cross section, showing that the rate of evaporation
from leaf cell walls (and hence potential for CO2 uptake) is largely controlled by stomatal guard cell (Gc)
aperture. (C) The evaporating surface of the leaf cell wall. (D) The air-water menisci held by surface tension and
hydrophilic cell wall material. (E) Close up of a single meniscus illustrating the origin of the capillary pulling force
(Fc). Adhesion of water to the wall (horizontal red arrows) anchors the meniscus edges. Evaporation (dashed
blue arrows) causes the meniscus to retreat, increasing its curved surface area (curved meniscus surface relative
to flat dashed surface). Surface tension resists the curvature, pulling the meniscus back to its equilibrium surface
(dashed blue line), thereby exerting a pulling force that lowers the liquid pressure behind the meniscus (Px< 0).
This force is propaged through the continuum in (A), moving water up from the soil. (F) Conduits in the xylem
are connected to each other through pits which offer resistance to flow but provide safety to the system. (G) If
air gets into these conduits, capillary forces are not strong enough to retain the water column because conduit
diameters are too large, and (H) water recedes into the adjacent tissue and the vessel becomes embolized and
non functional to water transport. (I) Pit “membranes” of modified primary cell wall material avoid the spread of
air throughout the xylem network by generating the same capillary forces as the menisci of mesophyll cell walls.
(J) Root cross section detailing water flow from soil to root xylem. The endodermis (En) with its casparian strip
(Cs) interrupts apoplastic flow, forcing water through the En cell membranes by reverse osmosis. (K) Detail of
water held in the soil by the same capillary forces that pull the water up the plant. Cohesion-tension is a tug of
war on a rope of water by capillary forces in leaf vs. soil.
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cannot hold the meniscus and water would drain out of
the conduit (Figure 1F–I). These simple calculations
indicate that the capillary force required for the
cohesion-tension mechanism is generated in the meso-
phyll cell walls and not in xylem conduits. One role of the
pit membranes between conduits is to serve as a
capillary safety valve. The nanometer scale pores in the
membrane are generally sufficient to arrest the air-
water interface and prevent air from propagating easily
between conduits (Figures 1I, 3). Plants could not
survive long without pit membranes, because without
them a single injury to the vascular system could
completely disrupt transport.

The extra-xylary portion of the transpiration
stream in roots and leaf mesophyll is extremely
short (<1 mm), and much less obviously specialized

for transport (Taiz and Zeiger 2010). As such, its
relatively high resistance to flow can appreciably
influence the plant’s hydraulic conductance. In living
tissues, the water travels either via an apoplastic
pathway (i.e., flowing through cell walls and
intercellular spaces), symplastic and transmem-
brane pathway (i.e., entering and exiting the cells
flowing through plasmodesmata and cell mem-
branes), or a combination of both (Figure 1;
Steudle 2000). However, when water reaches the
endodermis in the root, the apoplastic pathway is
blocked by the casparian strip, forcing water to
cross cell membranes (Figure 1J). This limits patho-
gen entry and controls solute uptake. During
transpiration the flow through the endodermis cell
membrane is pressure driven, but when soil
moisture is high and no transpiration occurs, water
can be taken up by osmosis creating positive xylem
pressure (root pressure) (Steudle 2000). An endo-
dermis may also be present in leaf tissue (Lersten
1997; Sack et al. 2015).

LIMITS TO THE COHESION-TENSION
MECHANISM

Water at 20 °C boils at an absolute pressure of 2.3 kPa
(Haynes 2014). Thus, relative to an atmospheric
pressure of 101.3 kPa water should boil at �99 kPa
(–0.0099MPa relative to zero atmospheric pressure).
Even in wet soil and with no transpiration, this negative
pressure is induced by the gravity itself at 10m in a tall
tree (Figure 2). Trees can grow much taller than 10m,
with Sequoia sempervirens topping out over 100m and
requiring a gravitational pressure drop of below�1MPa
(Koch et al. 2004). But even short plants reach
pressures well below �1MPa because of dry soil and
the frictional pressure drop (e.g., Jacobsen et al. 2007;
Venturas et al. 2016a). Obviously for the cohesion-
tension mechanism to work, boiling must be avoided,
and hence the xylem water must enter a metastable
liquid phase. Although this requirement has excited
periodic dissent, the theory and evidence for metasta-
ble liquid water in plants and other systems is extensive
(e.g., Zheng et al. 1991; Poole et al. 1992; Mishima and
Stanley 1998; Wheeler and Stroock 2008). When
referring to “negative pressure” it is important to
emphasize that it refers to the liquid phase, because a
negative gas phase pressure (i.e., below pure vacuum at

Figure 2. Pressure gradients in a tree
When soil is fully hydrated and stomata are closed the
pressure gradient of the stationary, hanging water
column balances gravitational force (black line). As soil
dries the starting point of the pressure gradient is more
negative but the slope is unchanged as long as there is
no flow (red line). When plants open their stomata the
slope of the pressure gradientwithin the plant increases
due to friction (solid blue line) and transpiration (E) is
proportional to the plant’s hydraulic conductance and
its soil to leaf pressure drop. Plants can actively control
this frictional pressure drop by adjusting their stomatal
aperture to vary E (e.g., the dashed blue line is the
pressure drop for Low E whereas the solid blue line for
High E).Water is transported in ametastable liquid state
because the boiling point is only�0.099MPa (red dash-
dot line, assuming 101.3 kPa atmospheric pressure and
20 °C temperature). The metastable liquid realm is
reached by the gravity gradient alone at >10m height
for plants in wet soil.
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zero molecular density) is indeed physically impossible.
In liquid phase, molecular density obviously changes
little with pressure, hence the analogy of a liquid under
negative pressure with a solid under tension.

How is metastable liquid water possible? Boiling is
typically triggered at nucleation sites, such as small air
bubbles, impurities, and irregular contact zones that
destabilize the hydrogen bonds among water molecules
(Pickard 1981). Elimination of such nucleation sites in the
xylem (or any other system) inhibits the phase change,
and allows the metastable liquid phase to exist. A lower
negative pressure limit exists where “cavitation” (the
phase change from liquid to vapor) will occur by the
spontaneousbreakingof inter-molecular bonds even in an
absolutely pure liquid. For pure water at physiological
temperatures, this lower theoretical limit is below
�30MPa (Mercury and Shmulovich 2014), which is
more negative than any xylem pressure measured in
plants. Among themany experimental demonstrations of
metastable liquid water are those of Briggs (1950), where
liquid water sustained pressures down to �25MPa
(between 5 and 35 °C) within the central section of glass
capillary tubes spinning in a centrifuge. Cavitation
ultimatelyoccurred,presumably triggeredby irregularities
in the contact between water and the glass wall.

Considerable research has elucidated the occur-
rence and mechanism of cavitation within the xylem
conduits of plants. Cavitation in the liquid-filled conduit
is accompanied by a rapid, but small, expansion of a gas
void that immediately relaxes the negative sap pressure
to near zero. This relatively high-pressure water is
thereby released to be taken up by surrounding vascular
tissue. As the conduit drains, the initially small gas void
gradually grows to fill the entire conduit until it is
arrested by the capillary action of the pit membranes
(Figure 1H, I). A gas filled conduit constitutes an
“embolism” that is non-transporting.

The air-seeding mechanism for drought-induced
cavitation
The “air-seeding” hypothesis explains the mechanism by
which xylem conduits become embolized under drought
stress conditions (Zimmermann 1983; Crombie et al. 1985;
Sperry and Tyree 1988). A functional xylem conduit (sap
filled, Px< 0) becomes air-seeded when it aspirates a gas
bubble through a pit membrane connecting it to a
neighboring conduit that is already gas filled (Pa¼ 0;
Figures 4B). The gas bubble nucleates cavitation, and then

gradually expandsuntil the conduit becomesembolizedas
water recedes into adjacent tissue (Figure 1G). The
pressure difference required to pull the air bubble through
an idealized cylindrical pit membrane pore is given by the
capillary equation (Eq. 1). It should be recognized,
however, that the actual manner by which the gas leaks
across themembrane is potentially quite complex (Schenk
et al. 2015). It has also been suggested that organic
surfactants could stabilize seeded bubbles and prevent
them from immediately nucleating cavitation (Schenk
et al. 2015, 2016), though direct evidence for this is lacking.

Air-seeding in conifers and angiosperms is slightly
different due to their different pit membrane structure
(Figures 3, 4B). Conifer pit membranes have two
differentiated areas: the torus, the center circle that is
very dense and has very small pores, and the margo,
which is the external highly porous ring that has very low
resistance to sap flow (Figure 3C; Hacke et al. 2004;
Pittermann et al. 2005).When a conduit is embolized the
membrane is deflected against the contiguous water
filled one and the torus creates a seal with the pit border
to avoid air spreading through the vascular system
through the porous margo (Figure 4B). However, if the
pressure difference is large enough, air seeding is
thought to occur when air is pulled through the pit
border-torus seal or a torus pore (Cochard et al. 2009;
Delzon et al. 2010; Jansen et al. 2012; Bouche et al. 2014),
or when the torus is displaced allowing air to seed
through the large margo pores (Sperry and Tyree 1990;
Hacke et al. 2004). Angiosperms have a more homoge-
neous pit membrane and therefore air-seeding occurs
through the largest pore within the membrane (which
may be a pre-existing pore, or one created during
membrane displacement) or by membrane rupture
(Figures 3B, 4B; Sperry and Tyree 1988). Air-seeding
requires an embolized conduit to start with, but such are
common owing to mechanical rupture of the vascular
system. Leaf drop, root senescence, breakage from
storms, fire, or herbivores, and even the endogenous
rupture of elongating protoxylem during regular plant
development will create embolized conduits that serve
as initiators of the air-seeding process (Figure 4A).

Support for the air-seeding hypothesis has been
obtained from several lines of evidence. One of the
most compelling is the use of positive air pressure to
induce embolism. The negative pressure Px required
for aspirating an air bubble through a pore of the
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intervessel pit membrane in theory should be equal to
the positive pressure required to push a bubble
through the same pore when Px¼ 0, and these two
values have been shown to be consistent (Lewis 1988;
Sperry and Tyree 1988; Cochard et al. 1992; Sperry
et al. 1996). Moreover, as indicated by Eq. 1, if surface
tension is lower the pressure required to push air
through the pit membrane pore is also lower, so the
cavitation pressure should become less negative; this
has also been confirmed by perfusing samples with
solutions of different surface tension (Crombie et al.
1985; Sperry and Tyree 1988). Correlations have been
obtained between mean cavitation pressures and pit
membrane thickness and porosity estimated both by
perfusing nanospheres (Jarbeau et al. 1995) and by
analyzing scanning electron microscopy (SEM) and
transmission electron microscopy (TEM) images
(Jansen et al. 2009; Lens et al. 2010; Plavcov�a et al.
2011). However, seeding pressures often indicate
larger pore sizes than those observed microscopically
(e.g., Choat et al. 2003). A likely reason is that the
single largest pore in the inter-conduit wall that
actually causes the air-seeding could be an extremely
rare outlier (Wheeler et al. 2005; Christman et al. 2009,
2012). Moreover pit membrane porosity may increase

when the membrane is aspirated against the bordered

pit wall (Figures 1l, 4B) due to the pressure difference

between a gas and water filled conduit (Choat et al.

2003, 2004). Some angiosperms have vestured pits,

which reduce the probability of the pit membrane

being stretched and, therefore, protect the membrane

from mechanical stress that can contribute to the air-

seeding process (Choat et al. 2004). Spatial aggrega-

tion of embolized conduits shown with imaging

techniques such as active xylem staining (Sperry and

Tyree 1988) and high resolution X-ray computed

tomography (HRCT; Choat et al. 2015; Torres-Ruiz

et al. 2016) also provide strong evidence for the

conduit-to-conduit spread of embolism predicted by

the air-seeding hypothesis.

Freeze-thaw induced cavitation
Freeze-thaw cycles can also induce xylem embolism

(Zimmermann 1983; Sperry and Sullivan 1992). Accord-

ing to the “thaw expansion hypothesis”, as sap freezes,

dissolved gasses are forced out of solution and form

bubbles in the conduits. When the sap thaws these

bubbles can either dissolve back into the sap or

nucleate cavitation. If the latter happens the conduit

becomes embolized and non-functional (Figure 4C). The

main factors that determine if a gas bubble dissolves or
not are the internal pressure (Pb) and diameter (Db)

Figure 3. Interconduit pit field and pit membranes
(A) Inter-vessel pit field in a hybrid poplar stem (Populus trichocarpa� deltoides). The pits in the upper third of the
image have their membranes removed (asterisks); the pits in the center have their membrane but the pit border
facing the viewer is removed; the pits on the lower third of the image show the pit apertures from the other side of
the vessel wall (arrow heads). Scale bar¼ 10mm. Photograph: Lenka Plavcov�a. (B) Surface view of pit membrane of
an angiosperm (Acer platanoides) with fairly small and homogeneous pores. Scale bar¼ 2mm. Photograph: Brendan
Choat. (C) Pit membrane of a conifer (Picea glauca) root tracheid showing the typical torus-margo structure. Scale
bar ¼2mm. Photograph: Amanda Schoonmaker.
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Figure 4. Mechanisms of xylem dysfunction
(A) Mechanical damage and xylem rupture and exposure to air is something that plants face commonly due to
storms, wind, herbivores, pathogens, fires, landslides, floods and human activities among many other factors.
Inter-conduit pits arrest the leakage of air (insert). (B) Air-seeding mechanism under drought stress conditions
for conifers and angiosperms. The pressure difference (DP) between an air-filled conduit (Pa¼ 0) and a
contiguous functional sap filled one (Px< 0) causes the pit membrane to be deflected against the bordered pit
wall of the functional conduit. In conifers air is aspirated into the functional conduit when DP is greater that the
pressure that can be sustained by the torus-bordered pit seal or when DP is large enough to displace the torus
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of the bubble, the sap surface tension (G) and
xylem sap pressure (Px). Cavitation will occur when
(Yang and Tyree 1992; Davis et al. 1999):

PX � Pb � 4G
Db

ð2Þ

where all pressures are relative to atmospheric in Pa,

and G and Db are in Nm�1 and m, respectively. Thus,

lower sap pressures and larger bubbles during thawing

will induce greater levels of cavitation. Experiments

performed on non-transpiring stems support the thaw

expansion hypothesis by specifically showing that the

embolism arises during the thawing phase, not during

the freezing phase (Utsumi et al. 1999; Mayr and Sperry

2010). Low or zero transpiration is likely the natural

situation during winter.
Species with larger conduits and under higher

water stress levels (lower Px) have been shown to
be more vulnerable to freeze-thaw cavitation (e.g.,
Sperry and Sullivan 1992; Davis et al. 1999; Mayr
et al. 2003b; Pittermann and Sperry 2006; Charrier
et al. 2014). Conduit diameter, rather than length, is
the important dimension determining susceptibility
to freeze-thaw cavitation (Davis et al. 1999;
Pittermann and Sperry 2003, 2006). This is thought
to result from sap freezing from the conduit walls
towards the center, thus larger conduit diameters
lead to formation of larger bubbles as gas is pushed
out of solution at the ice front as it progresses
towards the center, and larger bubbles are more
prone to expand during thawing under negative
pressure as determined by Eq. 2 (Pittermann and
Sperry 2006). Narrower conduits also require lower
temperatures for ice nucleation providing additional
resistance to freeze thaw cavitation (Lintunen et al.
2013).

Other factors that affect freeze-thaw cavitation are
the speed of ice formation and thawing, the number of
cycles, and the minimum ice temperature. Theoretical
calculations indicate that the larger the conduit
diameter or slower the freezing velocity, the greater
are the chances for a successful bubble formation to
occur via gas segregation (Sevanto et al. 2012). Faster
thaws can createmore embolism, possibly because they
minimize the time for bubble dissolution prior to the
renewal of negative liquid pressures (Langan et al.
1997). The number of freeze-thaw cycles may increase
the probability of a bubble large enough to trigger
cavitation (Mayr et al. 2003a; Mayr and Sperry 2010).
Lower freezing temperatures have been reported to
produce greater cavitation due to freeze-induced
redistribution of water (Ball et al. 2006) and tempera-
ture-dependent decreases in ice water potential that
affect bubble formation during freezing and air-seeding
(Charrier et al. 2014). Some experiments that infer
embolism from acoustic emissions suggest that cavita-
tion can also occur during the freezing phase (Mayr and
Zublasing 2010; Charrier et al. 2014). Freezing-phase
cavitation is certainly a possibility when stems are
frozen while the canopy is actively transpiring. Ice
blockage could cause downstream liquid pressures to
plummet, inducing cavitation either by air-seeding or at
the ice-liquid front (Cochard et al. 2000).

Failure by conduit collapse
Xylem conduit wallsmust be reinforcedwith lignin and a
thick secondary layer to resist collapse by internal
negative pressure (Figure 4D; Hacke et al. 2001a). To a
first approximation, the strength of the double wall
between adjacent conduits is governed by its “thick-
ness-to-span ratio”: the thickness of the double-wall (t)
divided by the width of the wall (b). To maintain a given

from its sealing position. In angiosperms air seeding occurs when DP is greater than the capillary force of the air-
sap meniscus that the largest pore of the pit membrane can sustain or when the membrane ruptures. (C)
Susceptibility to embolism induced by freeze-thaw cycles depends on the conduit (Dc) and air bubble (Db)
diameters. When the water within a conduit freezes (crystallizes) the air that it contained dissolved in the water
comes out of solution forming bubbles. If these bubbles are small enough they can dissolve again (or collapse)
when the ice thaws (blue arrows), but if they are large they will expand due to the negative pressure in the
conduit until it becomes embolized (red arrows). Conduits with larger diameters are more susceptible to freeze-
thaw cavitation. (D) Under drought-stress conditions conduits can fail mechanically if they do not support hoop
stress (which is thought not to be significant) or bending stress (as shown in transverse section). The amount of
bending stress that a conduit can withstand depends on the double wall thickness (t) and the wall span (b). If the
pressure is low enough the conduit can collapse or air seeding could potentially occur through microfractures in
the wall (as shown in longitudinal section).
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strength, wider conduits must grow thicker walls. The
thickness-to-span ratio of the wood cells also influences
wood density. Species that can develop very negative
sap pressures without cavitating tend to have high
thickness-to-span ratios and denser wood, presumably
to avoid conduit collapse. It is possible, though direct
evidence is lacking, that air-seeding could occur through
wall microfractures (Figure 4D; Jacobsen et al. 2005).
Actual conduit collapse has been observed in lignin-
deficient poplar mutants (Kitin et al. 2010) and under
natural conditions in pine needle tracheids (Cochard
et al. 2004) and transfusion tracheids of Podocarpus
grayi (Brodribb and Holbrook 2005). In the latter two
examples, collapse was reversible.

Other causes of xylem dysfunction
Vascular pathogens can disrupt water transport by
conduit degradation and occlusion or by alteration of
sap properties. In Dutch elm disease, a vascular wilt
disease caused by the fungi Ophiostoma ulmi and O.
novo-ulmi (Brasier 2000), cavitation has been observed
prior to vessel blockage (Newbanks et al. 1983).
Enzymatic degradation of vessel walls may cause
cavitation by providing entry sites for air seeding either
through the secondary wall or through weakened pit
membranes, as also observed in Xylella fastidiosa
infected grapevines (P�erez-Donoso et al. 2010). Infec-
tion may also reduce sap surface tension leading to air-
seeding at less negative pressures. These effects can be
enhanced by a reduction in conductivity due to direct
vessel blockage by the pathogen and degradation
debris, or by tyloses and gels produced by the elm as a
defense response (Figure 5A; Urban and Dvo�r�ak 2014;
Venturas et al. 2014; Li et al. 2016). Vessel and pit
morphological and chemical characteristics also affect
the speed ofOphiostoma spp. colonization (Mart�ın et al.
2007, 2009, 2013). Desiccation due to xylem cavitation
also seems to be the ultimate cause of tree death in pine
wilt disease, caused by the pinewood nematode,
Bursaphelenchus xylophilus (Kuroda 1991; Wang et al.
2010). The spread of cavitation caused by pine wilt
disease has been confirmed with magnetic resonance
imaging among other techniques (Utsuzawa et al.
2005). During pine infection the production and
accumulation of volatile terpenoids, which are hydro-
phobic and have lower surface tension than water,
nucleate bubbles that result in cavitation and embolism
of tracheids (Kuroda 1991; Wang et al. 2010). The spread

of fungi through the xylem that results in reduced sap
flow also appears to be themechanism of treemortality
by pine beetle infestations (Hubbard et al. 2013).

Fire treatments have been shown to cause xylem
dysfunction reducing sap flux density (Ducrey et al.
1996) and functional xylem area (Balfour and Midgley
2006). The mechanisms by which fire induces cavitation
are actually air-seeding and mechanical failure. Heating
caused by fire reduces sap surface tension (G) and,
consistent with Eq. 1, the pressure at which cavitation
by air-seeding occurs (Michaletz et al. 2012). Xylem
dysfunction by conduit deformation is enhanced by
thermal softening of cell wall polymers (Michaletz et al.
2012; West et al. 2016). In addition, the fire heat plume
increases the vapor pressure deficit to which plants are
exposed, potentially dropping xylem pressure (via rapid
increase in E) and inducing air-seeding (West et al. 2016).

VULNERABILITY CURVES

Xylem vulnerability curves (VCs) quantify an organ’s
resistance to xylem cavitation. They are at the heart of
much of plant hydraulics research; hence we dwell on
their technical underpinnings. Their “y” axis shows the
amount of embolism induced by the exposure of
the xylem to an “x” axis value for xylem pressure

Figure 5. Functions of living cells within the xylem
(A) Field elm (Ulmus minor) vessels occluded with
tyloses or gels (arrows) produced by contact cells as a
response to Dutch elm disease infection. Scale bar
100mm. Photograph: Juan Antonio Mart�ın. (B) Cross-
section from a boxelder (Acer negundo) branch
collected in October after the growing season. Living
cells (mainly fibers, F) are packed with starch granules
(stained black with lugol solution; arrow heads). Scale
bar¼ 50mm.
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(Figure 6). The VC methodologies differ in how the
embolism is induced, and how the embolism is
quantified (Table 1). In many cases, multiple combi-
nations are possible, making for a variety of VC types
which may suit a corresponding variety of experimen-
tal purposes.

Embolism induction techniques
To construct a water-stress VC, cavitation is induced
using one of three main methods: air dehydration, air
injection, and centrifugation (Table 1). The “air
dehydration” technique consists in evaluating cavita-
tion after whole plants (in situ or potted) or excised
segments (e.g., large branches) are dehydrated to
different Px (Sperry 1986; Tyree et al. 1992). Though
sample intensive, this method best mimics actual
drought-stress dehydration and is considered a “bench-
mark” method (Hacke et al. 2015; Martin-StPaul et al.
2014). The “air injection” method uses positive gas
pressure to induce xylem embolism when Px is typically
zero. As noted in relation to the air-seeding mechanism,
the positive air pressure required to push air through
interconduit pit membranes is approximately equal to
the negative pressure required to suck air through them
(Sperry and Tyree 1988). The pressure can be applied to
stems or roots by air injection through a single cut end
(Sperry and Tyree 1988) or through the stem or root
surface in a double-ended chamber where the organ
runs through the axis (Cochard et al. 1992; Salleo et al.
1992; Sperry and Saliendra 1994). In the latter case it is
sometimes necessary to incise the stem or root surface
(or use cut lateral branches) to insure sufficient air
penetration to the xylem. Air injection can also be
applied to individual vessels with a micro-capillary
connected to a pressure chamber (Melcher et al. 2003).
The “centrifugation” technique generates negative
xylem pressures in the centre of the sample during
rotation as a result of the centrifugal force (Pockman
et al. 1995), analogous to Brigg’s experiments with
cavitation in glass capillary tubes. There are three main
rotor designs for the centrifugation technique. With the
standard rotor design (Alder et al. 1997) the sample is
extracted from the rotor and embolism detected by
measuring the sample hydraulic conductance (see
below), whereas with the “Cavitron” (Cochard et al.
2005), or a modification of the standard rotor (Li et al.
2008), the hydraulic conductance is measured during
sample centrifugation. “Freeze-thaw cycles” can be

applied in combination with air dehydration or centrifu-
gation to induce freeze-thaw cavitation (Sperry and
Sullivan 1992; Davis et al. 1999). Air-injection and
centrifugation methods have been widely used because

Figure 6. Hydraulic vulnerability curves (VC): shape
and the PLC problem
(A) Theoretical VCs represented as losses in Ks vs.
xylem sap pressure (Px). Curves are Weibull functions
(Eq. 4; coefficients and Ksmax as indicated). Pressures
at 50% loss of Ksmax (P50) indicated by symbols. S1–S3
curves are sigmoidal in shape. E1 (green) curve is
“exponential” in having an abrupt initial decline in Ks.
Dash-dotted E2 curve is the same as E1, except that
embolism formed by exposure to Px¼–1.5MPa was
not removed (Ksmax is reduced). Pre-existing embolism
changes the curve shape (to sigmoidal) and the P50
(from �0.7 to �2.2MPa). (B) The same VCs plotted as
PLC vs. Px reduces information content. Sigmoidal VCs
S1 and S2 become identical as PLC, however, S1 could
be considered more resistant than S2 because it has a
greater Ks at the same Px. S3 is more resistant than S2
in both Ks and PLC, but its lower initial Ks than E1 is
masked by the PLC metric. The flushed E1 curve
appears to be completely different from its non-
flushed E2 counterpart when plotted as PLC.

366 Venturas et al.

June 2017 | Volume 59 | Issue 6 | 356–389 www.jipb.net



they have several advantages over air dehydration such
as requiring less plant material, being less time
consuming, and reducing sample variability since
several pressures can be evaluated on the same
segment.

Embolism measurement techniques
Many techniques have been developed for quantifying
the embolism that results from xylem cavitation
(Table 1). Most commonly, embolism is measured by
its effect on reducing the hydraulic conductance

Table 1. Main techniques used for inducing and measuring cavitation. There is a great array of possible
combinations between techniques used to induce and measure cavitation (although some are incompatible)

Techniques used to induce cavitation

Stress evaluated Techniques Stress applied Variations

Water stress Dehydration Dry down Native curves (in situ plants)

Air dehydration (potted plants or large excised parts)

Air injection Positive gas
pressure

Single ended pressure chamber

Pressure collar or double ended pressure chamber

Single vessel air injection

Centrifugation Rotation�
Negative xylem
pressure

No flow during rotation (standard rotor)

With flow measurements performed during rotation

Freezing Freeze-thaw Freezing and
thawing
cycles

Combined with dehydration

Combined with centrifugation

Techniques used to measure cavitation

Measured
variable Techniques Description (specific variables)

Conductance Conductivity
apparatus

Flow is measured gravimetrically with a balance while a known pressure
head is applied

Xy’lem Flow is measured with a thermal mass flow sensor and the pressure head
with a pressure transducer

HPFM High pressure flow meter

Evaporative flux Flow is measured and the pressure drop driving it is generated by
transpiration

Sap flux Flow through an organ is evaluated with a thermal mass flow sensor

Acoustic
emissions

Acoustic
emissions

Ultrasonic acoustic emissions due to cavitation are recorded

Images Active staining A stain solution is taken up by transpiration or perfused through xylem and
functional conduits become stained whereas non-functional ones do not

Advanced
imaging

High resolution X-ray tomography (HRCT), magnetic resonance imaging
(MRI) or neutron radiography is used to visualize fluid or air filled
conduits

CryoSEM Samples are frozen and cryogenic stage surface electron microscopy is
used to identify air and ice filled conduits or conduit deformation

Air flow Air injection Pressure at which air seeds through the sample is measured

Air flow through the sample under positive pressure is measured

Pneumatics Air flow through the sample under a vacuum is measured

Plant xylem hydraulics 367

www.jipb.net June 2017 | Volume 59 | Issue 6 | 356–389



(k¼flow/pressure difference) of pressure-driven wa-
ter flow through the sample xylem. A hydraulic
conductivity apparatus measures the flow rate
through a stem or root segment with an electronic
balance at a known applied pressure gradient (Sperry
et al. 1988). A low pressure difference (usually 1–3 kPa)
is used to avoid displacing or dissolving emboli in the
sample (e.g., Hacke et al. 2015). Sometimes a higher
pressure gradient is used if xylem flow resistance is
high and conduits small. If conduits are longer than
the sample (and hence open at both ends) the
pressure head should be lower than what conduit
capillary forces can withstand (Eq. 1). Hydraulic
conductance is calculated dividing the flow rate by
the applied pressure difference. Ideally, the net flow
rate should be measured, or alternatively, k should be
calculated from the slope of flow vs. applied pressure.
Either approach corrects for a typically non-zero flow
intercept (i.e., measurable flow at an applied pressure
head of zero; Torres-Ruiz et al. 2012). Hydraulic
conductance measurements can also be made on
detached shoot (branched stemþ leaves) or root
systems by measuring the slope of flow rate into the
cut base of the system vs. applied vacuum (Kolb et al.
1996) or positive (Yang and Tyree 1994; Tyree et al.
1995) pressure. The “high pressure flow meter”
(HPFM) uses positive pressure, which can act to
reverse embolism, and over-estimate k in embolized
plants.

An alternative to measuring k with experimentally
induced pressure-controlled flow is to use leaf transpi-
ration to induce flow (Yang and Tyree 1993). The whole-
plant k of intact plants can be estimated by dividing
trunk sap flow (Marshall 1958; Granier 1985; Steinberg
et al. 1989) by the soil-to-leaf pressure drop measured
with the pressure chamber. With the appropriate range
of xylem pressures, this method can yield a VC for the
whole plant (e.g., Baert et al. 2015). The same approach
can be used to measure k on detached leafy shoots or
individual leaves, where transpirational uptake into the
cut stem or leaf base is directly measured, and the leaf
xylem pressure subsequently measured with a pressure
chamber (Sack et al. 2002; Sack and Scoffoni 2012). This
technique, however, cannot distinguish between
changes in k caused by xylem embolism from those
due to changes in permeability of the extra-xylary water
pathways.

Hydraulic conductance can be standardized for
sample length to obtain hydraulic conductivity
(Kh¼flow rate divided by pressure gradient) and
further standardized for cross sectional area to give
area-specific hydraulic conductivity (Ks¼flow rate per
cross-sectional area divided by pressure gradient). The k
can also be standardized by leaf area distal to the
measured section (leaf specific conductivity, KL¼ flow
rate per leaf area per pressure difference). Regardless
of how hydraulic conductance is standardized for size
(K’¼ Kh, Ks, KL), it is often further normalized relative to
its initial, maximum value, prior to experimental
embolism induction (K’max). A “percentage loss of
hydraulic conductivity“ (PLC) is calculated as:

PLC ¼ 100 � 1� K0

K0max

� �
ð3Þ

Hydraulic conductance data are plotted vs. the
corresponding Px, and usually fitted to functions for
comparisonand forobtainingcommonlyusedparameters
such as the pressure at which 50% of conductivity is lost
(P50). VC shapes depend on xylem characteristics and, in
theory, canbe any shapeas long as hydraulic conductance
decreases or maintains itself equal while Px drops (i.e.,
conductance cannot increase as Px drops). Common
functions used to fit VC data are linear, polynomial,
exponential, Weibull, Gompertz, and sigmoid exponential
(Pammenter and Van derWilligen 1998). The VCs in Figure
6 were constructed with the following Weibull function:

K0 ¼ K0max � e�
�px
bð Þa ð4Þ

where a and b are, respectively, the scale and shape
parameters, and K’ is Kh, Ks or KL. VCs constructed with
absolute values of hydraulic capacity (K’) compare the
plant’s actual transport capacity and are often prefera-
ble to PLC-based curves. For example, a species with a
high K’max which is at 80 PLC can actually have a greater
water conducting capacity than another species with
low K’max at 5 PLC (Hacke et al. 2015). In either situation,
the VC also depends on whether a sample has its native
embolism reversed or not prior to curve generation,
because this will alter K’max. Embolism reversal is
achieved by flushing at moderately high pressures
(usually 100–200 kPa) or vacuum infiltrating under
filtered measuring solution (e.g., Hacke et al. 2015).
Vacuum infiltration is recommended for conifers as
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flushing may deflect and damage the torus-margo pit
membranes (Hietz et al. 2008).

Hydraulic conductivity measurements are usually
performed with a 10–30mM KCl solution to standardize
for ionic effects on pit membrane flow resistance
(Zwieniecki et al. 2001; Gasco et al. 2006; Nardini et al.
2007). In some cases 1mMCaCl2 is added because of the
additional presence of low levels of Caþ2 in sap (Bouche
et al. 2016). The added calcium ions can reduce
sensitivity to KCl in some, but not all species (Nardini
et al. 2007). It is important that the solution is filtered
(0.1–0.2mm filter) to avoid potential reductions in
conductivity due to pit membrane clogging (e.g., Hacke
et al. 2015). In addition, the solution must not be super-
saturated with air to avoid gas bubbles coming out of
solution during measurements that may induce con-
ductivity losses. This is especially important if centrifu-
gation methods are used for constructing the VC.
Although there is no evidence that xylem sap is
degassed in vivo, degassing is a useful precaution for
avoiding any super-saturation of the measurement
solution.

Rather than measuring the hydraulic consequences
of embolism, somemethods are based on the acoustical
detection of the initiating cavitation event. Acoustic
emission (AE) monitoring was one of the first methods
used to measure cavitation (Milburn 1973; Tyree et al.
1984). With this technique VCs are generally plotted as
the percentage of cumulative AEs at each Px (e.g.,
Kikuta et al. 1997; Rosner et al. 2006). The AE method is
non-invasive, but only provides indirect evidence of
xylem embolism since it is not obvious howmuch loss in
k is producedwith each AE, plus AEs can be generated in
large numbers by processes other than cavitation
within xylem conduits (Kikuta et al. 1997).

Imaging embolism is another important way to
quantify embolism, and it also provides information on
which sapwood areas or conduits are functional. Active
xylem staining is performed by allowing a transpiring
branch to uptake a dye solution (usually basic fuchsin,
acid fuchsin, crystal violet, or safranin) or by perfusing a
dye solution at low pressure through the sample (e.g.,
Newbanks et al. 1983; Sperry 1986; Jacobsen et al.
2007). Functional conduits become stained as dye flows
through them. Then sections are prepared and images
taken with a light microscope for their analysis. Double
staining techniques (i.e., before vs. after embolism

reversal) can also be performed to determine if non-
functional conduits are embolized or permanently
blocked, for example, by gels and tyloses (Sauter
1984). The spreading of stain during sample preparation
can be a limitation of these methods (Newbanks et al.
1983).

Cryo-scanning electron microscopy (cryoSEM) can
be used to determine which vessels are water filled and
which embolized (Canny 1997). However, care must be
taken to prove that the embolism observed was not
caused by the freezing of the sample (Cochard et al.
2000). More sophisticated techniques such as high-
resolution magnetic resonance imaging (MRI)
(Holbrook et al. 2001), high resolution X-ray tomogra-
phy (HRCT) (Brodersen et al. 2010, 2011) and neutron
radiography (T€otzke et al. 2013) allow visualizing
embolized conduits both in intact plants and in excised
segments. Of these methods the most widely used is
HRCT due to its high resolution (Brodersen et al. 2010,
2011). These methods allow three-dimensional (3D)
visualization of the vascular network. However, they are
limited in the size and type of samples that can be
imaged, the artificial canopy environment, and difficulty
of access for making accurate measurements of xylem
pressure and other physiological variables. Also, it can
be difficult to distinguish actively conducting conduits
from immature ones, or those occluded with gels
(P�erez-Donoso et al. 2007; Jacobsen and Pratt 2012;
Jacobsen et al. 2015). In addition, it is not trivial to
predict k of an axis or plant from the spatial
distribution of imaged embolized conduits. Although
the Hagen-Poiseuille equation can provide estimates of
individual lumen conductance (Giordano et al. 1978;
Lewis and Boose 1995), the flow resistance of the inter-
conduit pit connections and perforation plates (in
vessels) as well as the influence of 3D organization
complicates up-scaling to the organ or plant level. A
new optical method also allows visualizing the spatial-
temporal spread of emboli through leaf vein networks
by evaluating rapid changes in light transmission caused
by cavitation events (Brodribb et al. 2016).

Another set of techniques are based on air-flow
through samples for assessing embolism and construct-
ing VCs. Single vessel air injection (Melcher et al. 2003)
registers the gas pressure at which bubbles seed
through conduit end-walls, and a VC can be plotted as a
the cumulative frequency of conduit air-seeding
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pressures (Christman et al. 2009, 2012; Venturas et al.
2016b). The fact that pressure-driven air flow increases
through an excised sample as a greater proportion of
conduits are embolized has been used to estimate VCs
from pneumatic conductivity through segments
(Ennajeh et al. 2011). A recent method estimates the
volume of embolism in dehydrating shoot systems by
measuring air flow from the cut end of the shoot
induced by a partial vacuum (Pereira et al. 2016).

CURRENT DEBATES

The inherent challenges of working with water in a
metastable state have always required methodological
vigilance in the plant hydraulics field. It has been learned,
for example, that one cannot puncture a xylem conduit
with a cell pressure probe and expect to consistently
avoid cavitating the metastable liquid phase, particularly
at native xylem pressures below �1MPa (Tyree 1997;
Zimmermann et al. 2004). Current debates of methodol-
ogy and physiological process have been inspired by two
seemingly odd, but generally reproducible observations:
the apparent active refilling of conduits despite negative
xylem pressure, and “exponential” vulnerability curves.

Refilling of embolized conduits
Reductions in k due to cavitation and embolism can
reduce productivity and pose a threat to plant survival;
therefore, understanding how plants repair damage to
their transport system is of great importance. Plants
with secondary growth can of course grow new
water-filled conduits, but a potentially cheaper and
shorter-term alternative is refilling embolized conduits
(Nardini et al. 2011). Refilling has been documented
during specific periods of the year or at night when very
high or even positive pressures (above atmospheric, via
osmotically generated root pressure) can be generated
in the xylem. Under these conditions, xylem pressures
rise above the capillary threshold for the conduits
(defined in Eq. 1), allowing the embolized conduit to
take up water and compress the gas above atmo-
spheric, leading to eventual bubble dissolution (Sperry
et al. 1987; Yang and Tyree 1992; Cochard et al. 1994;
Hacke and Sauter 1996; Nardini et al. 2011). We refer to
this non-controversial type of refilling as “refilling by
xylem pressure”, meaning that the embolized conduit is
being pressurized by the bulk xylem pressure. The exact

Px required, and kinetics of the process, depend on the
amount of gas dissolved in the sap, the size of the
embolism, and tissue anatomy (Yang and Tyree 1992).

Oddly, not all claims of refilling can be explained in
this way. Since at least the 1990s (e.g., Borghetti et al.
1991) there have been reports of refilling despite the
bulk xylem sap being more negative than the capillary
threshold. If true, this is remarkable because it suggests
that either Eq. 1 is not always correct, or what is more
widely thought, that water is actively pumped into
embolized conduits and kept there at pressures above
the capillary threshold (and above the surrounding
xylem) long enough to refill the conduit.We herein refer
to this alternative as “refilling against xylem pressure”,
because the embolized conduit is being pressurized
above the bulk xylem pressure.

Evidence for refilling against xylem pressure has been
frustratingly equivocal because of the discovery of a
number of measurement artifacts. Some of the earliest
reports of refilling against xylem pressure came from
experimentswhere embolismwas induced in intact plants
by air-injection (Salleo et al. 1996; Tyree et al. 1999).
However, it has been suggested (with some evidence)
that the appearance of embolism and refilling cycles in
these experiments could be created by the super-
saturation of xylem water during air injection (Wheeler
et al. 2013). Evidence fromcryoSEMobservations of xylem
“flash-frozen” in situ (e.g., Canny 1997;McCully 1999)was
discountedonce itwas found that freezingundernegative
pressure could cause embolism in proportion to the rate
of transpiration, creating the illusion of an embolism-
refilling cycle (Cochard et al. 2000). Subsequent evidence
from diurnal cycles in PLC of excised segments has also
been found, in at least a few cases, to result from an
“excision artifact” (Wheeler et al. 2013). Cavitation is
thought to be triggered by the edge of the cutting device
or by impurities and microbubbles that flow into the
sample during excision (Wheeler et al. 2013). Keeping the
water in which samples are cut and prepared clean is
important to avoid impurities entering conduits through
their cut end. Recent HRCT imaging supports the
supposition that embolism is artificially introduced during
cutting of a stemwhose xylem is under negative pressure,
even if this is done underwater as is standard (Torres-Ruiz
et al. 2015). The more negative the xylem pressure during
cutting, the greater the excision artifact, hence diurnal
pressure cycles can result in what looks like an embolism
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and refilling cycle. The excision artifact has led some
researchers togosofaras to reject all evidence for refilling
against xylem pressure (Cochard and Delzon 2013; Delzon
and Cochard 2014).

However, the excision artifact is not as damning as it
might seem. Firstly, not all species exhibit the problem
(Wheeler et al. 2013; Venturas et al. 2015), and leaves as
an organ appear to be immune (Scoffoni and Sack 2015).
Secondly, the excision artifact is easily avoided by
relaxing the xylempressures beforemaking the final cut,
which can be done by making multiple underwater cuts,
gradually clipping the segment down to its final length
and removing any superficial embolism or clogging
caused by the first cut (Trifil�o et al. 2014; Torres-Ruiz et al.
2015; Venturas et al. 2015; Nardini et al. 2017). This
precautionwas originally recommended by Dixon (1914),
and has been widely employed since that time (e.g.,
Zimmermann 1978; Venturas et al. 2015). In some species,
such as Laurus nobilis, the opposite problem of passive
embolism refilling can result if stems are relaxed too long
in water prior to final sample excision (Trifil�o et al. 2014;
Venturas et al. 2015). However, negligible post-excision
refilling was observed in Vitis coignetiae based on a
recent MRI study (Ogasa et al. 2016). Furthermore, a
recent study performed with HRCT in Laurus nobilis also
showedno increases inPLC following theproperexcision
protocol (i.e., multiple under-water cuts) and found a
good agreement between hydraulic and imaging techni-
ques (Nardini et al. 2017).

In summary, an excision artifact can be avoided by:
(i) making multiple under-water cuts of samples
originally under tension such that the original cut is at
least 1 cm (if not onemaximum conduit length) from the
final segment end; and (ii) minimizing relaxation time in
water (Trifil�o et al. 2014; Beikircher and Mayr 2015;
Venturas et al. 2015; Ogasa et al. 2016). Both of these
practices have been widely used, and it is not obvious
that all evidence for refilling against xylem pressure can
be dismissed by the excision artifact. This is particularly
true since many of these studies show inhibition of
refilling by the interruption of phloem transport by
girdling or by using metabolic blockers (e.g., orthova-
nadate), a result which cannot easily be attributed to
the excision artifact (e.g., Salleo et al. 1996, 2004;
Christman et al. 2012; Trifil�o et al. 2014).

In vivo imaging techniques have been able to catch
embolism refilling in action (Brodersen et al. 2010;
Brodersen and McElrone 2013), but whether this is truly

refilling “against” xylem pressure requires better
resolution of Px adjacent to the refilling conduit. In
studies on Vitis, water can be seen exuding into
embolized vessels from adjacent living cells
(Brodersen et al. 2010; Knipfer et al. 2016). This is
consistent with a M€unch-type flow redirected from the
phloem towards embolized conduits via ray tissue and
xylem parenchyma (Salleo et al. 2004, 2006, 2009;
Nardini et al. 2011; Lucas et al. 2013). Exudation may be
driven osmotically by accumulation of sucrose or other
osmoticum in residual water of embolized conduits
(Secchi and Zwieniecki 2010, 2011; Nardini et al. 2011; Ryu
et al. 2016), or by pressure-driven flow analogous to
water exiting phloem sink cells. Whether the conduit
ultimately fills appears to require that the collective rate
of exudation into the conduit exceeds drainage from
the conduit into the surrounding xylem (Brodersen et al.
2010; Knipfer et al. 2016). The observation of drainage
suggests that refilling conduits are not hydraulically
isolated by air-blocked pit membrane chambers, as has
been speculated (Holbrook and Zwieniecki 1999;
Zwieniecki and Holbrook 2000; Vesala et al. 2003).
The more negative the Px, the more likely drainage
would exceed exudation, whichmay limit the refilling to
Px very near the capillary threshold. Given that water
drained from refilling vessels would tend to elevate
local Px, it is crucial to measure the local Px to prove
whether the imaged refilling is indeed against xylem
pressure.

Exponential vulnerability curves
A second current methodological controversy concerns
the accuracy of VCs when performed on long-vesseled
material using centrifuge methods (Cochard et al. 2013;
Delzon and Cochard 2014; Martin-StPaul et al. 2014).
Long-vesseled samples include stems of ring-porous
trees, lianas, and roots of many angiosperms. Such VCs
typically show an “exponential” shape, wherein hy-
draulic conductivity drops quickly and significantly as
soon as Px becomes negative, before stabilizing to a
long “tail” at more negative Px (curve E1 in Figure 6).
The exponential shape seems odd, because it indicates
that many vessels are so vulnerable as to be embolized
under typical midday xylem pressures. Careful experi-
ments with the Cavitron rotor design (Cochard et al.
2005) have shown that an exponential shape is caused
by artifactual embolism of vessels that are long enough
to extend from the cut end of the sample to its middle
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or beyond (Cochard et al. 2005, 2010; Martin-StPaul
et al. 2014; Wang et al. 2014; Pivovaroff et al. 2016). In
the Cavitron procedure, there is water flow through the
sample during spinning, and it has been suggested that
the artificial vulnerability is due to micro-bubbles or
other impurities triggering cavitation as they flow
through long vessels towards the centre of the sample
where the pressure is most negative (Sperry et al. 2012;
Rockwell et al. 2014; Wang et al. 2014; Pivovaroff et al.
2016). In species with short vessels, such impurities are
intercepted by pit membranes before reaching the
middle of the sample. In light of these results, it has
been suggested that all exponential VCs are incorrect
regardless the method used to obtain them, and that all
centrifuge methods are prone to an “open vessel
artifact” as the phenomenon has been termed (Cochard
et al. 2013; Cochard and Delzon 2013).

When all the evidence is considered, however, it is
premature to dismiss the validity of an exponential
curve shape in every circumstance. The Cavitron rotor
design may be especially prone to the open vessel
artifact, because when the standard rotor design and
procedure is used (Alder et al. 1997), extensive testing
shows no clear evidence of the artifact (Christman et al.
2012; Jacobsen and Pratt 2012; Sperry et al. 2012; Tobin
et al. 2013; Hacke et al. 2015; Pratt et al. 2015). Unlike the
Cavitron, in the standard rotor there is no flow through
the sample during spinning, and there is no need to
deliver solution to the sample during spinning, a
turbulent process that could create de-stabilizing
microbubbles. Both features of the standard rotor
may minimize the open vessel issue. But more
convincing is that exponential VCs from long-vesseled
species can be obtained by methods other than
centrifugation. VCs generated using single-vessel air
injection or stem-end air injection, and the benchmark
method of air dehydration (which is assumed to be the
least artifact-prone; Martin-StPaul et al. 2014) can all
give exponential VCs (e.g., Christman et al. 2012; Sperry
et al. 2012; Yang et al. 2012; Tobin et al. 2013; Hacke et al.
2015; Venturas et al. 2016b). Exponential VCs are also
found in root xylem of many conifers (Pittermann et al.
2006a). Although root tracheids are larger than stem
tracheids, they are still unicellular and obviously too
short to suffer from an open “vessel” artifact.

Exponential curves are also not necessarily as odd as
they might appear at first glance. Given the dogma that

large conduits are more vulnerable than small ones (see
below), it should not be surprising that VCs from
material with very large conduits should indicate
cavitation at more modest Px than material with smaller
conduits. Large conduits also have a much greater
hydraulic conductance than small ones, so exponential
VCs typically start at a much higher K’max than a
sigmoidal VC. Thus, even after a substantial loss of K’
(i.e., a large PLC), the tail end of the exponential VC can
exhibit an absolute K’ that is comparable to the K’max of
a sigmoidal curve. This tail can extend to a Px as negative
(or more so) as the end of a sigmoidal curve.
Exponential root VCs (e.g., Torres-Ruiz et al. 2012;
Pratt et al. 2015) are consistent with their larger
conduits, and the fact these upstream organs are
exposed to less negative Px than stems (Figure 2). In
some species like Populus tremuloides (Venturas MD,
Love DM, Sperry JS, 2016, unpublished data) the root
curves are exponential but at 90 PLC still have greater Ks
than fully hydrated stems (PLC¼ 0) that have sigmoid
curves. Exponential curves do not necessarily imply
daily cycles of cavitation and refilling as concluded by
some researchers (e.g., Cochard and Delzon 2013).
While this may occur with some species under specific
environmental conditions (e.g., Yang et al. 2012), in
other cases the highly vulnerable conduits may become
more permanently embolized.

Factors other than conduit size can also influence VC
shape, complicating the debate. The same material can
have both an exponential and a sigmoidal curve
depending on whether embolism was initially reversed
(by flushing or vacuum infiltration). An exponential VC
can only be measured on refilled material; non-refilled
samples will always have a sigmoidal VC (as shown in
Figure 6) because any vulnerable conduits will already
be embolized (Sperry et al. 2012; Hacke et al. 2015). The
method to select depends on the question and
experimental circumstances; but the difference com-
plicates meta-analyses that attempt to compare VC’s
across species (e.g., Choat et al. 2012). Short-vesseled
species with a sigmoidal VC can also transition to an
exponential VC after going through a cavitation and
refilling cycle, exemplifying the “cavitation fatigue”
phenomenon (Hacke et al. 2001b). Cavitation fatigue
has been attributed to theweakening of pit membranes
after air-seeding (Hacke et al. 2001b; Hillabrand et al.
2016). Cavitation fatigue appears to be reversible in
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sunflower, depending on the composition of the xylem
sap (Stiller and Sperry 2002). In balsam poplar and
trembling aspen, by contrast, pit membranes become
irreversibly damaged as a result of drought-induced
cavitation (Hillabrand et al. 2016). VCs plotted in PLC
terms can also alter their shape solely due to changes in
K’max as a result of permanent blockage of conduits with
gels or tyloses after samples have been stressed
(Jacobsen and Pratt 2012).

SAFETY VS. EFFICIENCY TRADE-OFFS IN
XYLEM

Water stress VCs have been measured for many
hundreds of species, and show considerable variation.
The P50 (Px at 50 PLC) ranges from above �1MPa to
below �10MPa (Choat et al. 2012). This variation is
highly correlated with ecology such that species are
generally no more resistant to cavitation than required
to maintain transport over the Px range encountered
during their growing season. It is obvious that drier soil
in the active rooting zone means more negative Px,
which requires more cavitation-proof xylem for trans-
port maintenance. But it is less obvious why species
with a very cavitation-proof xylem tend to be excluded
from wet habitats. A general hypothesis is that traits
that confer safety from cavitation under low Px
conditions compromise competitive ability under high
Px conditions.

A specific version of this hypothesis is a “safety vs.
efficiency” tradeoff wherein traits that provide safety
from cavitation also decrease the hydraulic conduc-
tance of the xylem, which reduces growth rates under
favorable conditions (Hacke and Sperry 2001; Gleason
et al. 2015; Pratt and Jacobsen 2017). In support of this
hypothesis there is a tendency for negative P50 to be
associated with reduced K’max, although the trend can
be quite weak (Gleason et al. 2015). The weakness
emerges from the fact that cavitation resistance and
K’max are determined by different combinations of
xylem traits. According to the air-seeding mechanism,
cavitation resistance increases with lower permeability
of the collective inter-conduit pitting (the conduit
“end-wall”) to air penetration. The safety vs. efficiency
trade-off suggests that an air-tight end-wall would
necessarily also have a low hydraulic conductance, thus
acting to reduce K’max. Curiously, at the individual pit

level, there is no evidence for this trade-off. Inter-
specific comparisons indicate that more air-tight pits do
not exhibit lower estimated hydraulic conductance
(Wheeler et al. 2005; Hacke et al. 2006). Direct
measurements of these crucial pit properties are
difficult to achieve (e.g., Choat et al. 2006), but are
needed to confirm the lack of a pit-level trade-off.
Although there may be no trade-off for individual pits,
one could still emerge when the entire end-wall (which
can include tens of thousands of pits) is considered.
According to the “rare-pit” hypothesis (Wheeler et al.
2005; Hacke et al. 2006; Christman et al. 2009; Lens et al.
2010), end-wall air-seeding pressure results from the
single leakiest pit in the vast array of end-wall pits. By
chance, the more pits per end-wall, the leakier the end-
wall, and the more vulnerable the xylem to cavitation.
By the same token, the more pits per end-wall, the
greater the end-wall hydraulic conductance, and the
larger will be the entire conduit lumen and its hydraulic
conductance. The K’max will increase accordingly,
because it depends on the series conductance of end-
wall and lumen.

The rare pit hypothesis is consistent with a weak P50
vs. K’max relationship. The number of end-wall pits per
conduit size (lumen length and diameter) is quite
variable (Sperry et al. 2005; Wheeler et al. 2005; Hacke
et al. 2006). Hence, P50 (which depends on pit number)
can be partially uncoupled from K’max (which depends in
part on conduit size). Safety of large and efficient
vessels can also be preserved by not connecting them
directly via one end-wall, but connecting them with
short “bridges” of small vessels or tracheids (e.g.,
Carlquist 1985; Brodersen et al. 2013; Cai et al. 2014)
whose multiple end-walls greatly reduce the chance of
air propagating between the big vessels. There is also
evidence of variation in the relationship between
end-wall pit quantity and end-wall air-seeding pressure
(Christman et al. 2009, 2012; Christman and Sperry 2010;
Lens et al. 2010). Pit qualities, such as membrane
thickness and chemistry, membrane diameter, pit
chamber depth, and aperture size, likely alter the
probabilistic link between pit number and collective air-
seeding pressure (Christman et al. 2009). Furthermore,
K’max can be increased independently of P50 simply by
adding more conduits per xylem area without changing
any other structural feature (Pittermann et al. 2005;
Hacke et al. 2006). Finally, modeling studies have shown
that the impact of an embolized conduit on total
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conductance depends on how it is connected to the 3D
conduit network (Loepfe et al. 2007).

A broader interpretation of the safety vs. efficiency
trade-off includes mechanical safety in addition to
safety from air-seeding. As discussed above, conduits
that are resistant to air-seeding must also be stronger
with a greater thickness-to-span ratio, and hence
contribute to denser, more expensive, wood (Hacke
et al. 2001a; Jacobsen et al. 2005). A developmental
upper limit to wall thickness ultimately limits conduit
diameter for a given strength and hence K’max. Thus,
large conduits may not be able to support low negative
pressures for strength reasons alone, regardless of air-
seeding considerations. This strength vs. efficiency
trade-off may be the main reason for the P50 vs. K’max

relationship observed in conifers (Pittermann et al.
2006b). Conifer wood is 95% tracheids by volume,
meaning conduit strength andwood strength are highly
coupled. Angiosperm wood is generally less than 20%
vessels, so its conduit properties can vary more
independently fromwood-level features. The remaining
80% is largely taken up by fibers (which greatly influence
density, strength, and storage) and xylem parenchyma
(storage and xylem refilling; Figure 5B).

The safety vs. efficiency trade-off is much more
straightforward with respect to freeze-thaw-induced
embolism. As noted previously, vulnerability to freeze-
induced embolism increases strongly with conduit
diameter, consistent with theoretical expectation (see
above). The Hagen-Poiseuille equation predicts that
hydraulic conductivity of conduit lumens increases with
the fourth power of their diameter (Giordano et al. 1978;
Lewis and Boose 1995). Hence, resistance to freezing-
induced embolism necessarily comes at the expense of
conduit-level conducting efficiency. This trade-off is
consistent with a general trend towards narrower
xylem conduits with increasing freezing threat in
diffuse-porous trees (McCulloh et al. 2010; Hacke
et al. 2017).

The contrast between conifers and angiosperms
exemplifies the complexity of xylem tradeoffs. At first
glance, tracheid-based conifer xylem might seem to be
hydraulically inferior to vessel-based angiosperms,
given that tracheids are roughly 10 times shorter
than vessels of the same diameter, and that tracheids
do not reach as wide a maximum diameter as vessels
(Pittermann et al. 2005). Yet conifers often dominate
forests of temperate climates, and whole stem K’max

overlaps substantially between diffuse-porous tem-
perate angiosperms and co-occurring conifers
(Pittermann and Sperry 2003; Pittermann et al.
2006a,2006b). One reason for this overlap is that
diffuse-porous vessels are limited in their diameter to
minimize freezing-induced embolism in winter (Hacke
et al. 2017). A second reason is that conifers
compensate for their “inefficient” tracheids by
maximizing their number per wood area, and main-
taining several years of functional sapwood (e.g., vs.
just a single ring in ring-porous angiosperms). A third,
and most interesting reason, is that the torus-margo
pit structure of conifer tracheids is approximately 60
times more efficient (per pit area) in conducting water
than the inter-vessel angiosperm pit (Pittermann et al.
2005), a feature which compensates for the fact that
water must pass these pits roughly 10 times more
frequently as it travels up the tree. And notably, this
60-fold increase in pit efficiency has been achieved
without compromising safety from air-seeding, be-
cause conifers as a group are no more vulnerable to
cavitation than angiosperms (Pittermann et al. 2005).
Indeed, they tend to maintain larger cavitation safety
margins (Choat et al. 2012).

It seems clear that multiple strategies have evolved
to balance multiple trade-offs in xylem structure and
function, such that ecological parity is approached
despite considerable anatomical diversity.

MOLECULAR BIOLOGY OF XYLEM
FUNCTION

Genetics of cavitation resistance
Genetic and genomic tools have been used to study
drought resistance mechanisms in crops and guide
breeding programs (Tuberosa and Salvi 2006; Fleury
et al. 2010), and to a lesser extent also in some tree
species (Aranda et al. 2012). Few of these molecular
studies have focused on xylem cavitation, probably
because of the time consuming phenotyping involved
(but see Plavcova et al. (2013) for an example where it
was performed). Some have evaluated the effect of
ploidy levels on hydraulic traits including cavitation
resistance (Maherali et al. 2009; Hao et al. 2013), others
aquaporins expression and their effect on conductance
or refilling (e.g., Hacke et al. 2010; Secchi and Zwieniecki
2010), and several the relationships between population
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genetic diversity, cavitation resistance and the plasticity
of this trait (Aspinwall et al. 2011; Corcuera et al. 2011;
Lamy et al. 2011, 2014; Schreiber et al. 2011, 2016;
Wortemann et al. 2011; L�opez et al. 2013, 2016). Most of
the latter studies found limited genetic effect on
hydraulic trait variations which were largely due to
phenotypic plasticity, but in Pinus canariensis and
Artemisia tridentata support for local adaptation of
traits related to hydraulic safety and survival was also
found (Kolb and Sperry 1999a, 1999b; L�opez et al. 2013,
2016). In hybrid poplar clones, genetic variation in
cavitation resistance was correlated with average leaf
size. Clones with small leaves had more resistant xylem
than genotypes with larger leaves (Schreiber et al.
2016); and this finding deserves follow-up experiments.

Many developmental studies have analyzed the
genes involved in xylem growth, cell wall deposition
and tracheary element maturation (Oda and Fukuda
2014; M�enard and Pesquet 2015; Rů�zi�cka et al. 2015;
De Rybel et al. 2016). Although these latter studies
did not evaluate resistance to cavitation, this kind of
research could provide promising insights to the
plant hydraulics field due to the importance of cell
wall and pit membrane development and physical-
chemical characteristics in cavitation resistance.
Studies focused on secondary cell wall lignification
also help understand resistance to conduit collapse
(Kitin et al. 2010).

Given the importance of hydraulic traits in plant
ecology and performance, there is a huge opportunity
for contributions from molecular biology. In particular,
it would be a major advance to discover the genetic
architecture underlying the VC phenotype. This would
open the door to more explicit testing of structure-
function physiology (via targeted modulation of gene
expression) than would ever be possible using standard
physiological experiments.

Aquaporins and plant hydraulics
Flow through the plasmamembrane andmost inner cell
membranes is facilitated by membrane proteins called
aquaporins. Depending on cellular localization and
sequence homology, aquaporins are divided into
subgroups. The most commonly studied subgroup is
the plasma membrane intrinsic proteins (PIPs). The
functions of PIPs in roots and leaves have been
discussed in a recent review (Chaumont and Tyerman
2014). Here we focus on the physiological roles of PIPs

located in or near vascular tissue. PIP water channels
are prominent features of both xylem and phloem
(Hacke and Laur 2016). This suggests that PIPs play
important roles associated with long-distance transport
(Figure 7).

What functions do aquaporins have in the xylem?
Long-distance transport occurs in tracheids and vessels,
so why are water channels needed? To answer this
question, it is useful to consider that vessels have
extensive pit connections with xylem parenchyma cells,
and that water is constantly re-distributed between the
apoplast (xylem conduits) and symplast (living vascular
cells).

The parenchyma cells that specialize in this exchange
are called contact cells. These contact cells are sites of
increased enzyme activity (Sauter et al. 1973). Contact
cells have large vessel-facing pits (Murakami et al. 1999;
Plavcov�a and Hacke 2011) and express high numbers of
PIP mRNA (Almeida-Rodriguez and Hacke 2012). These
features are consistent with the hypothesis that PIPs are
located in the plasma membrane of contact cells to
facilitate water exchange between the vessel and
parenchyma networks. The direction of water move-
ment will depend on the water potential gradient. The
refilling of embolized vessels is one example for the
significance of this interface. In this case, water will flow
from rays to embolized vessels. To the extent that living
parenchyma cells contribute water to the transpiration
stream(capacitance; seePfautschet al. 2015a),waterwill
flow from rays to water-filled vessels. When transpira-
tional demand is minimal, the direction of flow may
change and ray cells may recharge by taking up water
from the vessel network.

Aquaporin-mediated water exchange via contact
cells also allows for radial water movement from
functional vessels to the cambium. This will likely
support cambial activity and the expansion of
developing vessel elements. The rapid expansion of
developing vessel elements is driven by gradients in
solute concentration and subsequent water uptake. It
is therefore not surprising that PIPs are localized to
the plasma membrane of expanding vessel elements
(Stanfield et al. 2017). Finally, water is exchanged
between xylem and phloem (M€unch 1927; Pfautsch
et al. 2015b). The exchange of water between the two
vascular tissues likely contributes to the establishment
of pressure gradients in the phloem.
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The picture emerging from these considerations
is that radial water exchange (and water moving
between the symplast and apoplast) is potentially
important, yet it remains understudied and difficult
to quantify. A more holistic view of xylem transport
will include radial water exchange in addition to
long-distance axial flow. The same statement can be
made for phloem transport (van Bel 2003; Lucas
et al. 2013), but this is beyond the scope of this
review.

Aquaporin activity will also influence the hydraulic
conductance of the “extra-xylary” flow path of the
transpiration stream in the roots and leaf tissue. If the
extra-xylary conductance declines faster with Px than
the xylem component, it can significantly reduce whole-
plant hydraulic conductance independently of the
xylem VC. Recent work on whole leaf vulnerability
curves (including the extra-xylary component) reports
an often extraordinarily sensitive decline in leaf
hydraulic conductance with Px, with virtually all of the

Figure 7. Role of aquaporins in radial water flow
(A) Simplified diagram showing water flow (blue arrows) when water is exchanged between vessel elements (VE),
contact cells (CoC), ray parenchyma, sieve elements (SE), and companion cells (CC). It is to be noted that mature VE
are dead cells and therefore do not have a plasmamembrane (PlaM), nucleus (Nu) nor any other organelles such as
vacuoles (Vc). Water exchange between living cells if facilitated by plasmodesmata (Pd). Developing vessel
elements (DV) do have a PlaM and water mainly flows into them to facilitate their expansion. (B) Detail of a pit
connection between a VE and a CoC.Water flows through the pit membrane (PM), an amorphous layer (AL) and the
PlaM. Cell wall (CW) is thicker in the VE as it has to support lower pressures. (C) Details showing how aquaporins
(Aq) facilitate water flow through the PlaM at a pit connection. (D) Aquaporins form tetramers with four individual
channels through which water molecules can flow in single file configuration. (E) Confocal laser scanning
micrograph showing the localization of PIP2 (water channel) proteins in a balsam poplar (Populus balsamifera) leaf
midvein. The image is color-coded: black and grey show background; yellow/white shows strong signal intensity.
Strong PIP2 signals were found in two cell types, the plasma membrane of phloem sieve tubes (Ph) and in the
plasma membrane of developing vessel elements (DV). Micrograph: Ryan Stanfield. Scale bar¼ 20mm.
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decline attributed to extra-xylary tissues (Scoffoni et al.
2017). Any role of aquaporins is unknown. These results
deserve further confirmation, however, because the
reported declines in detached leaf k are quite severe
(Scoffoni et al. 2017), even going to zero at values of Px
where intact plants of the species are still actively
transpiring and have significant whole plant hydraulic
conductance (e.g., Malosma laurina; Taylor-Laine et al.
2016). At the root end of the flowpath, declines in extra-
xylary conductance (together with xylem cavitation)
are important in disconnecting absorbing roots from
drying soil. This disconnection acts to moderate the Px
of the active rooting zone in deeper-rooted plants, and
in shallow rooted CAM plants it acts to keep stored
water from being sucked back out of the plant by drying
soil (North and Nobel 1997, 1998).

MODELING PLANT RESPONSES TO
ENVIRONMENT AND DROUGHT
MORTALITY

Extensive tree and shrub diebacks and die-offs due to
drought stress have been reported globally (Figure 8;
e.g., Breshears et al. 2005; Allen et al. 2010; Anderegg
et al. 2012). The physiological processes and mecha-
nisms underlying drought mortality are far from being
fully understood, in part due to complicated inter-
actions with other factors such as pests and diseases,
and the difficulty to determine precisely when a plant
is dead (Sala et al. 2010; McDowell et al. 2013; Sevanto

et al. 2013). Three main drought-mortality mecha-
nisms, that can occur simultaneously, have been
proposed: (i) hydraulic failure of the vascular system,
(ii) carbon starvation, and (iii) pest or disease attacks
due to the reduced vigor of stressed plants (McDowell
et al. 2013). However, hydraulic failure or damage to
the vascular system seems to be the most consistent
and common element associated with drought
mortality (Kukowski et al. 2013; Anderegg et al.
2015b; Rowland et al. 2015; Anderegg et al. 2016;
Rodr�ıguez-Calcerrada et al. 2017).

Hydraulic traits are consequently well correlated to
species drought mortality (e.g., Pratt et al. 2014;
Anderegg et al. 2016; Venturas et al. 2016a). Several
studies show that species with very resistant xylem are
not always the ones with greater survival under severe
drought conditions (e.g., Pi~nol and Sala 2000; Rice et al.
2004; Venturas et al. 2016a). This is consistent with all
species maintaining an approximately similar margin of
safety from hydraulic failure regardless of habitat, in
part through stomatal control of transpiration and Px
(Choat et al. 2012). Furthermore, a climatic drought can
induce very different Px values across species of the
same locality chiefly because of differences inwhere the
active rooting zone is located in relation to the
hydrologically-mediated soil moisture profile. There-
fore, in order to predict species vulnerability to drought
we need to know at a minimum its VC, root distribution,
and its stomatal response to environmental cues (which
determines E and Px).

Figure 8. Drought induced dieback and mortality
(A) Diverse chaparral shrub community showing extensive dieback and mortality in California during the 2014
historic drought. (B) An aspen stand recovering after die-off presumably triggered by drought stress in Southern
Utah.
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Modeling stomatal behavior is most challenging,
because stomatal aperture responds to diverse
environmental cues: soil moisture, atmospheric va-
por-pressure deficit, light, and CO2 concentration.
Mechanistic models of stomatal regulation are very
complex and far from complete (Li et al. 2006; Buckley
and Mott 2013). Consequently, most ecosystem- or
land-surface models employ empirical models which
need to be calibrated for species and circumstance.
Such models are necessarily of limited predictive
value, and tend to perform poorly under drought
conditions (Powell et al. 2013). An alternative is to
assume stomatal regulation optimizes the trade-off
between photosynthetic opportunity (which can be
modeled from biochemical capacity; Farquhar et al.
1980), and the cost of the associated transpiration.
Initial progress was hampered by the lack of a
quantitative model for the cost of transpiration
(Cowan and Farquhar 1977; Buckley et al. 2017). The
subsequent discovery of plant VCs and attendant
hydraulic theory have enabled the cost of transpira-
tion to be quantified as the risk of hydraulic failure
from cavitation and rhizosphere drying (Tyree and
Sperry 1988; Jones and Sutherland 1991; Sperry et al.
1998). A new optimization model uses soil-to-leaf
(whole plant) vulnerability curves to calculate the
“water supply function” (E vs. Px relationship) for each
modeling time step. This function determines how the
proximity to hydraulic failure decreases as stomata
open and E rises (Sperry and Love 2015; Sperry et al.
2016). The supply function, in combination with leaf
energy balance and biochemical models of photosyn-
thesis, is used to calculate the corresponding “instan-
taneous carbon gain” function (assimilation rate, A vs.
Px) for the same time step. The optimal stomatal
conductance (and E, Px, A, etc.) for that time step is
where the relative gain minus the relative hydraulic
risk (the instantaneous profit) is maximized (Figure 9;
Sperry et al. 2017; Wolf et al. 2016). This relatively
simple optimization model produces the expected
(and observed) stomatal response trends under a
great variety of environmental conditions (combina-
tions of light, CO2, soil dryness, atmospheric dryness)
without the need of knowing the mechanisms
underlying stomatal control (Sperry et al. 2017). This
approach demonstrates that plant hydraulics can
provide the “missing link” between environmental

Figure 9. Conceptual framework for stomatal optimi-
zation of hydraulic and biochemical limitations
For each modeling time step (and set of environmental
cues) awater supply function (Evs.Px, bluecurve inpanelB)
can be calculated by integrating the whole plant vulnerabil-
ity curve (panel A). The supply function is a curve of
increasinghydraulic risk as E andPx approach their hydraulic
limit at zero hydraulic conductance (Ecrit, Pcrit). This
transpiration supply function is associated with a corre-
spondingcarbonassimilation function (Avs.Px, greencurve,
panel B), which can be computed from the supply function
and biochemical capacity for photosynthesis. The optimum
stomatal conductance at a given instance (at optimization
symbols) is located where the relative carbon gain minus
the relative hydraulic risk (the profit) is maximized (panelC;
for more details refer to Sperry et al. 2017).
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cues and stomatal responses for improving the
predictions of land-surface models, particularly under
drought conditions (e.g., Mackay et al. 2015; Tai et al.
2017). At the same time, the model predicts the
degree of hydraulic failure and hence risk of mortality.

In view of the potential for plant hydraulics to
improve our understanding of drought responses, there
is an even greater need to understand and characterize
the VCs of plant organs. Currently, there is much more
information available on VCs of small stems than of
roots, leaves or main stems, yet we know that plants
can be hydraulically “segmented”with roots and leaves
often being more vulnerable to cavitation and conduc-
tance loss than stems (Tyree et al. 1993; Tsuda and Tyree
1997; Pivovaroff et al. 2014; Wolfe et al. 2016). We also
require better understanding of plasticity and regional
and seasonal changes in VCs (Jacobsen et al. 2014;
Anderegg 2015) as well as VCs’ changes due to
interactions with other factors such as fire, pathogens,
life stage, and regeneration dynamics (Jacobsen et al.
2016; Mart�ınez-Vilalta and Lloret 2016; Pausas et al.
2016). Further research is also required for unraveling
the legacy effect of drought on the vascular system of
plants (Anderegg et al. 2013, 2015a) and how allocation
to roots, stems, and leaves varies under drought
conditions (Wolfe et al. 2016).

SUMMARY

We have come a long way in the understanding of plant
hydraulics. Fortunately, despite the inherent challenges
of investigating liquid water in a metastable state, we
have the knowledge, tools and techniques to detect and
control for artifacts. The increasing variety of methods
available allows cross-checking of experimental VCs and
evaluation against intact plants. There is no “holy grail”
of methods for embolism detection: all have their
advantages and limitations. Importantly, there are many
areas of general agreement, starting with the validity of
the cohesion-tension mechanism itself, cavitation by air-
seeding and the role of pit membranes, VCs in short-
conduit species (i.e., all conifers and lots of diffuse-
porous angiosperms), the importance of refilling by
xylem pressure, many aspects of freezing-related
cavitation, the coordination between stomatal regula-
tion and cavitation-avoidance, and the association
between cavitation resistance, species ecology, and

drought mortality. The functioning of the xylem does
indeed form a backbone of plant physiology, because so
many functions depend on a viable transpiration stream.

Some of the outstanding problems to be solved
include the true vulnerability of large-vesseled angio-
sperms. Ring-porous trees, lianas, root systems typically
have very large vessels, and it is critical to establish their
functional properties as convincingly as has already been
done for smaller-conduit species. The existence and
biological importance of refilling against xylem pressure
has yet to be established despite considerable effort. The
importance of extra-xylary tissues in controlling leaf- and
whole-plant hydraulics is another controversial topic. Pit
membranes and end-walls are crucially important struc-
tures, controlling both vulnerability to cavitation and
influencing hydraulic efficiency. Their structure-and-func-
tion in terms of development, chemistry and biomechan-
ics is insufficiently known. We are still far from being able
to predict a plant’s VC simply from its xylem structure. The
linkage between plant hydraulics and stomatal regulation
may prove to be a useful modeling tool, but any
underlyingmechanism for optimizinggas exchangeunder
hydraulic constraints is poorly understood. Finally, genet-
ics andmolecularbiologyunderlying theVCphenotype is a
huge opportunity for ground-breaking research.
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