
Summary We evaluated whether patterns in hydraulic archi-
tecture increase transport efficiency. Five patterns are identi-
fied: area-preserving branching; variable trunk versus twig sap
velocity; distally decreasing leaf specific conductivity (KL) and
conduit diameter; and a decline in leaf specific conductance
(kL) of the entire plant with maturation. These patterns coexist
in innumerable combinations depending on the ratio of dis-
tal/proximal conduit number (F). The model of West and col-
leagues does not account for this diversity, in part by specifying
F = 1 and requiring a specific conduit taper derived from the in-
correct premise that kL is constant with plant size. We used
Murray’s law to identify the conduit taper that maximizes kL

for a given vascular investment. Optimal taper requires the ra-
tio of distal/proximal conduit diameter to equal the ratio of
distal/proximal KL. The smaller these ratios, the greater the kL.
Smaller ratios are achieved by an increase in F. Conductivity
and diameter ratios < 1 and F ≥ 1 in plants are therefore consis-
tent with maximizing conducting efficiency. However, the ben-
efit of increasing F requires area-increasing conduit branching,
potentially leading to mechanical instability of trees. This
trade-off may explain why tree stems were relatively ineffi-
cient with F near 1 and limited conduit taper compared with
vine stems or compound leaves with F > 1 and greater taper.
Within trees, the anatomies of a coniferous and a diffuse-po-
rous species were less efficient than that of a ring-porous
species, presumably because the latter allows conduit area to
increase distally without also increasing total xylem area. This
is consistent with decelerating sap velocities from trunk to
twigs in ring-porous trees versus accelerating velocities in
other types. In general, the observed architectural patterns are
consistent with the maximization of transport efficiency oper-
ating within mechanical constraints.

Keywords: da Vinci’s rule, leaf specific hydraulic conductivity,
Murray’s law, WBE model.

Introduction

Martin Zimmermann coined the term “hydraulic architecture”
in 1978 to refer to the spatial pattern of hydraulic resistances in
the xylem of a plant’s branch system. Flow resistance is the
pressure drop per volume flow rate of the transpiration stream.
High resistance is costly either because the plant must function

at a more negative pressure, or because gas exchange is re-
stricted to minimize the drop in negative pressure. The latter
behavior of pressure regulation has been shown to limit CO2

fixation (Meinzer and Grantz 1990, Sperry and Pockman
1993, Meinzer et al. 1995, Saliendra et al. 1995, Hubbard et al.
2001). This mode of hydraulic constraint has been implicated
in limiting the maximum height of trees (Mencuccini and
Grace 1996, Ryan and Yoder 1997) and in causing declines in
productivity in old growth forests (Yoder et al. 1994, Hubbard
et al. 1999, Tyree 2003). Models of ecosystem fluxes are be-
ginning to include canopy pressure regulation to better predict
adjustments in canopy CO2 fixation in response to soil and at-
mospheric drought (Williams et al. 1996). Carbon and water
fluxes are coupled in plants, and insights from hydraulic archi-
tecture ultimately lead to a more mechanistic understanding of
the limits on plant carbon uptake.

The boldest claim for the significance of hydraulic architec-
ture is that it underlies the quarter-power scaling laws in biol-
ogy (West et al. 1997, 1999, Enquist et al. 2000). Whether or
not this claim is true, its proponents have introduced an impor-
tant concept: namely that hydraulic architecture conforms to
the “energy minimization” principle. Accordingly, the xylem
resistance is the lowest possible for a given investment in vas-
cular tissue (West et al. 2000). The West et al. model has had a
large impact and has been extended to make predictions about
the maximum height of trees (West et al. 1999), plant resource
use and population density (Enquist et al. 1998, Enquist and
Niklas 2001, Niklas et al. 2003) and plant growth patterns
(Enquist et al. 1999, Niklas and Enquist 2002, 2003).

We begin our review with an overview of major patterns in
hydraulic architecture. This provides the basis for evaluating
the model of West et al. (1997). We discuss recent work that
uses Murray’s law to test for energy minimization (McCulloh
et al. 2003, 2004). We conclude by considering how patterns in
hydraulic architecture influence transport efficiency. Our re-
view does not discuss methods or principles of water transport,
which others have comprehensively covered (Tyree and Ewers
1991, Cruiziat et al. 2002).

Patterns in hydraulic architecture

The artist and engineer Leonardo da Vinci did perhaps the ear-
liest work in hydraulic architecture. In the 1500s, da Vinci hy-

Tree Physiology 25, 257–267
© 2005 Heron Publishing—Victoria, Canada

Patterns in hydraulic architecture and their implications for transport
efficiency

KATHERINE A. MCCULLOH1,2 and JOHN S. SPERRY1

1 Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
2 Corresponding author (mcculloh@biology.utah.edu)

Received July 28, 2004; accepted November 3, 2004; published online January 4, 2005



pothesized that trees must preserve the total area of their
branches across junctions in order to supply their leaves with
water (Richter 1970). The modern equivalent of da Vinci’s rule
is the pipe model, which assumes that each unit of leaf area is
associated with a unit “pipe” of wood of a fixed cross-sectional
area running from root to leaf (Shinozaki et al. 1964a, 1964b).
The prediction of the pipe model of constant leaf area per unit
xylem area results in area-preserving branching within the
canopy, which is consistent with da Vinci’s rule. Below the
canopy, the pipe model predicts that the xylem area will in-
crease because of the build-up of disused pipes that had been
attached to shed leaves. Measurements by Shinozaki et al.
(1964b) show that whole-stem area is preserved across branch
points within the canopy and that stem area increases in the
major branches and trunk below the crown.

Other measurements also support da Vinci’s rule, at least
within the canopy. Huber (1928) compared the ratio of total
xylem cross-sectional area (Ax) to the leaf mass supplied by
the stem at various points in young Abies concolor (Gord.)
Lindl. ex Hildebr. and Picea sp. trees to exclude non-transport-
ing heartwood. He found that this ratio (dubbed the “Huber
value” by Zimmermann 1978a) was generally constant within
crowns, aside from the higher values found in the leader, pre-
sumably resulting in a better hydraulic supply to the leader
than to the side branches. Aside from the leader, the general
constancy of the Huber value within the canopy is consistent
with da Vinci’s area-preserving rule. Horn (2000) also found
area-preservation in branches from the trunk through the large
branches, but observed a possible trend of increasing area in
the small distal branches (Figure 1). Overall, however, a major
architectural pattern is the widespread occurrence of area- pre-
serving branching.

Why should plants follow da Vinci’s rule? The pipe model is
neutral on this question and provides no insight. Although
widely cited as such (Tyree and Ewers 1991, West et al. 1997,
1999, Enquist et al. 2000), the pipe model is not a hydraulic
model. It is a biomass allometry model with no assumptions
about the anatomy of the unit pipe, and no particular implica-
tions concerning either hydraulics or biomechanics.

Da Vinci derived his rule from the explicit assumption that
water flows with “equal rapidity” throughout the tree (Richter
1970, Zimmermann 1983). For a constant sap velocity, Ax

must be constant at every level in the tree. This is because the
volume flow rate (Q) is conserved across branch ranks, so
maintaining equal mean velocities (v) requires constant cross-
sectional area of conduits (Ac):

Q vA= c (1)

Although da Vinci did not mention it, he implicitly assumed
that the cross-sectional area of the piping is proportional to the
total xylem cross-sectional area (Ac ∝ Ax). In those pre-micro-
scope days, the anatomical complexity of wood was probably
not appreciated. Although Huber measured only Ax, most of
the measurements that test da Vinci’s rule have been made on
the total stem area (e.g., Figure 1), which makes yet a further
assumption that Ac is also proportional to the cross-sectional
area of the entire stem, including the pith, phloem and peri-
derm.

More than 400 years after da Vinci, the first measurements
of sap velocity refuted his assumption that it is constant from
trunk to twig. Huber and Schmidt (1936) found that sap veloc-
ity in diffuse-porous birch increased from the trunk to the dis-
tal branches. Andrade et al. (1998) have also observed this
pattern in five diffuse-porous species co-occurring in the trop-
ics, and McDonald et al. (2002) later measured the same veloc-
ity profile in conifers. In contrast, Huber and Schmidt (1936)
found that sap velocity in ring-porous ash and oak decreased
slightly from the trunk to the small branches. These measure-
ments indirectly reveal the distribution of conduit area from
the trunk to the leaves, because of the conservation of flow
(Equation 1). In diffuse-porous species and conifers, the con-
duit area profile must decrease distally, while in oak and ash it
must increase slightly. Variable conduit areas do not contradict
the area-preserving branching pattern, which applies to total
stem or xylem area. Conduits make up only approximately
6–55% of the total xylem area in angiosperms and 90–94% in
conifers, and not all conduits are necessarily functioning
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Figure 1. The preservation of stem
cross-sectional area across branch
points. In symmetrically bifurcating
branches, Horn (2000) calculated an
index of branching allometry that
equals 0 for area-preserving branching,
> 0 for area-increasing branching and
< 0 for area-diminishing branching.
Figure is from Horn (2000); used with
permission.



(Zimmermann 1978a, Gartner 1995). The velocity data, com-
bined with the trend toward area-preserving branching, indi-
cate that the functional conduit area can vary independently of
total stem area.

Although only a few species have been tested, the contrast
of the velocity profiles in ring-porous oak and ash versus the
diffuse-porous species and a conifer suggests a second archi-
tectural pattern. Ring-porous species in general may have
higher velocities in the trunk than the branches, and dif-
fuse-porous and coniferous species may have lower velocities
in the trunk than in the branches. The fact that these velocity
profiles undermine da Vinci’s rationale for area-preserving
branching leaves no mechanical or hydraulic basis for the ten-
dency of plants to follow da Vinci’s rule.

Martin Zimmermann (1978a) established a third architec-
tural pattern. He measured the hydraulic conductivity of stem
segments throughout several trees. Conductivity (K ) is a
length-independent measure of conducting capacity:

K
Q

P l
=

∆ /
(2)

where ∆P/l is the pressure gradient driving flow. To relate con-
ducting capacity to leaves supplied by the stem segment, he di-
vided K by the total leaf area (AL) irrigated by the stem seg-
ment. This quotient is referred to as the leaf specific conduc-
tivity (KL = K/AL). The general pattern from a large number of
studies on a wide variety of tree species is an exponential rise
in KL as stem diameter increases in a tree proximally from mi-
nor branches to the trunk (Figure 2; Zimmermann 1978a,
Tyree et al. 1983, 1991, Ewers and Zimmermann 1984, Zotz et
al. 1997). Although there can be great variability when bran-
ches of the same size are compared, and the leader often has
higher KL values than lateral branches (Zimmermann 1978a,
Cochard et al. 1997), the general pattern is clear when a wide
range of diameters is compared. Trees may approximate area-
preserving branching, but they certainly do not show velocity-
or conductivity-preserving branching. The uncoupling of con-
ductivity and cross-sectional area is caused by changes in con-
duit number and diameter in stems of different sizes.

The general constancy of Ax and the pattern of declining
conductivity mean that there must be a decrease in the conduc-
tivity per xylem area (the xylem specific conductivity, Ks =
K/Ax) moving from the trunk to minor branches. Anatomi-
cally this means there is either a decrease in the number of con-
duits per area (conduit density) or a decrease in conduit diame-
ter as water flows towards the leaves, or both. Available data
suggest conduit densities are either relatively constant (James
et al. 2003, K.A. McCulloh, unpublished results), or increase
with height (Gartner 1995, Lemoine et al. 2002). In contrast,
there is strong evidence for conduit diameters narrowing dis-
tally (Figure 3; Zimmermann 1978a, 1983, James et al. 2003,
McCulloh et al. 2004). Distal tapering of conduit diameters
constitutes a fourth general pattern of hydraulic architecture.

The relationship between the observed patterns of velocity
(and conduit area), KL, and conduit taper are diagrammed in
Figure 4. This graph will be referred to frequently (see also

Figure 5) and needs careful explanation. The horizontal axis
quantifies the trend for narrower conduits moving from trunk
to twig (conduit taper) as the ratio of distal to proximal conduit
diameter. A smaller ratio means greater taper. The vertical axis
quantifies the drop in KL from trunk to twig as the ratio of dis-
tal over proximal KL: the smaller this conductivity ratio, the
greater the drop in conductivity. Both ratios are determined for
the same distal/proximal branch rank comparison. A plant
with a single x-axis taper ratio can have different y-axis con-
ductivity ratios (or vice versa) by adjusting how its number of
conduits changes across the two branch ranks. For example,
increasing the number of conduits from proximal to distal rank
will cause less of a drop in the conductivity (greater y-axis
conductivity ratio) for the same x-axis taper than if the number
of conduits was the same across the ranks.

The solid curve in Figure 4 shows the relationship between
conduit taper and conductivity ratio for trees with constant sap
velocity, and hence constant conduit area (equal Σr2) through-
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Figure 2. The relationship between leaf specific conductivity, KL, and
wood diameter (= cambium diameter). There is a pronounced trend
for values of KL to increase with stem diameter within a tree. The
trend is consistent across diverse tree types including a temperate co-
nifer (Thuja occidentalis), a temperate, diffuse-porous tree (Acer sac-
charum) and a tropical tree (Schefflera morototoni). Figure is from
Tyree et al. (1991); used with permission.



out. Coniferous and diffuse-porous species, with increasing
velocity and decreasing conduit area from trunk to twig, will
fall below the constant area curve (Figure 4, – area, + veloc-
ity). Ring-porous trees with decreasing velocity and increas-
ing conduit area will be above the curve (Figure 4, + area,
– velocity).

The advantages usually attributed to the observed KL pattern
reflect the way that these conductivities determine the overall
hydraulic conductance from trunk to leaf. Hydraulic conduc-
tance (k) is a length-dependent measure that represents the
conductivity integrated over the length of the flow path (k = Q/
∆P). If conductivity is constant, doubling the flow path will
halve conductance. Hydraulic conductance can also be ex-
pressed per leaf area supplied (kL = k/AL).

By having the lowest conductivities in the minor branches at
the end of the flow path, plants can control the distribution of
water regardless of how far it must travel (Zimmermann
1978a). Low conductivities at the downstream end result in
similar values of total root–leaf conductance despite different
path lengths. The advantages of this are numerous. The higher
values of KL in the leader will result in a lower pressure differ-
ence required to move a given amount of water to a fast grow-
ing leader than to the side branches. Under favorable condi-
tions, this can result in a better water supply to the leader than
to the side branches, even though the path length to the leader
may be several times that to the lower branches (Zimmermann
1978a, 1978b, Ewers and Zimmermann 1984). Under water
limiting conditions, branches with lower KL values will be

more water stressed. This stress will be manifest as either
greater stomatal closure or lower xylem pressures. Either re-
sponse can lead to preferential loss of low-conductance bran-
ches. This controlled dieback improves the water balance of
the remaining crown (Tyree and Sperry 1988).

A fifth architectural trend is for a decrease in whole-shoot kL

as plants mature (Rust and Roloff 2002, Mencuccini 2003).
Meinzer and Grantz (1990) and Saliendra et al. (1995) ob-
served three- to fourfold declines in the kL values of sugarcane
and birch associated with maturation from the juvenile to adult
stage. In birch, the drop in kL was the result of the increased
path length of larger trees (Saliendra et al. 1995). The decline
in kL with maturation imposes stress because a plant must ei-
ther reduce its stomatal conductance to maintain leaf water
balance, or experience progressively more negative leaf water
potential as it ages (Hubbard et al. 1999, Barnard and Ryan
2003). The hydraulic costs associated with increased plant
height have been implicated in declines in forest productivity
with age (Yoder et al. 1994, Hubbard et al. 1999, Schäfer et al.
2000, Tyree 2003) and in limits to tree height (Mencuccini and
Grace 1996, Ryan and Yoder 1997, Koch et al. 2004).

Table 1 summarizes the architectural patterns we have dis-
cussed. It is not an exhaustive list, but includes the basic
trends. Characterizing architectural patterns is important, but
interpreting their meaning is equally so. We consider some
functional consequences of architectural patterns after dis-
cussing the innovative work of West and colleagues.
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Figure 3. The inside tangential diameters of the largest vessels from
the most recent growth rings versus the distance from the apex of the
tree. Symbols: three birch individuals (�) and two poplars (�). The
narrowing of conduit diameter with distance from the trunk is typical
for woody plants. (Zimmermann 1983, McCulloh et al. in press). Fig-
ure is based on Zimmermann (1978a); used with permission.

Figure 4. The relationship between conduit taper across branch ranks
and the corresponding leaf specific conductivity (KL) ratio. The solid
line shows the relationship when conduit area, and therefore sap ve-
locity, is constant from trunk to twigs. Above this line, conduit area in-
creases distally and sap velocity declines (+ area, – velocity). Below
this line, conduit area diminishes distally and sap velocity increases
(– area, + velocity). The dashed line is for trees with an equal number
of conduits from trunk to twigs, as assumed in the WBE model. The
triangle identifies the conduit taper across adjacent ranks assumed by
WBE for a bifurcating branching structure. The dash-dot line shows
the 1:1 relationship conforming with Murray’s law. Xylem networks
on this line maximize hydraulic conductance per fixed vascular vol-
ume and branching architecture.



The West et al. (WBE) model

West et al. (“WBE,” 1997, 1999) have developed a model of
hydraulic architecture to predict various quarter-power scaling
laws, including the scaling of metabolic rate with body mass to
the three-fourths power. Their most recent version for plants

(West et al. 1999, Enquist et al. 2000) included the following
assumptions of branching structure and hydraulic architecture.
(1) The branching pattern is self-similar, meaning that all
branches of a given rank have equal length and give rise to an
equal number of daughter branches. This is similar to the re-
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Figure 5. (A) Conductivity ra-
tio versus conduit taper.
Dash-dotted line is the 1:1
Murray’s law relationship.
Dotted lines represent different
conduit furcation numbers (F),
the ratio of cross-sectional
conduit number in adjacent
distal versus proximal stems.
As F of adjacent ranks is in-
creased from the West et al.
(WBE) model value (i.e., of 1)
to 4 (dotted curves F = 1, 2,
4), more taper is required (=
smaller ratio) for the same
conductivity ratio. Symbols
show adjacent rank data for
species measured by
McCulloh et al. (2003, 2004)
and for the architecture as-
sumed in the WBE model (�).
Tree stems are from Fraxinus
pensylvanica Marsh. (fp,
ring-porous), Acer negundo L.
(an, diffuse-porous) and Abies
concolor (ac, conifer). Vine
stems are from Parthenocissus
quinquefolia (L.) Planch. (pq)
and Campsis radicans (L.)
Seem. ex Bur. (cr). Compound
leaves are from the same spe-
cies. Stem ranks were defined
by annual increments of exten-
sion growth and leaf ranks
were petiole versus petiolule
comparisons. For McCulloh et
al. (2004) data (stems of fp, an
and ac), conductivity ratios
were measured directly and
taper estimated from F. For
McCulloh et al. (2003, 2004,
all comparisons), conductivity
ratio was estimated from the
Hagen-Poiseuille equation and
taper determined from mean
conduit diameters. Symbols
are pooled means from both
studies. (B) Hydraulic conduc-
tance (kL) versus conduit taper.
The kL was calculated for
fixed branching architecture

(five bifucating ranks of equal length) and constant vascular volume. The maximum kL for a given F (dotted F = 1, 2, 4 curves) is achieved at
Murray’s law (dash-dotted curve). The kL was arbitrarily set equal to 1 for the Murray optimum when F = 1. Increasing F leads to increasing
conducting efficiency. For fixed investment and branching architecture, tree stems (� and WBE �) are much less efficient than vine stems and
compound leaves. Efficiency of tree stems may be limited by the need to stay on or below the area-preserving curve for conduits (solid “equal
Σr2” curve) to maintain a mechanically stable area profile. Vine stems and leaf xylem show area-increasing conduit branching and greater hy-
draulic efficiency, consistent with no mechanical constraint on their xylem structure.



peating bifurcation of a Psilotum shoot, for example. This
shoot structure has no main axis and every leaf is equidistant
from the base of the tree. (2) Daughter branches are shorter
than the parent branch by a specific ratio (e.g., 0.79 for bifur-
cating branching). (3) The number of functional conduits is
equal at every level, meaning the trunk has the same number of
functional conduits as all petioles combined. (4) The conduit
diameter tapers just enough to ensure the hydraulic resistance
of the trunk-to-leaf flow path is independent of length. This
means that the hydraulic conductance per leaf area is constant
with plant size. (5) The final branch of the network is size in-
variant. (6) Branch length scales with branch diameter to the
two-thirds power as required for elastic similarity of mechani-
cal support (McMahon 1973). From the specifics of their
self-similarity assumption (1), this requires area-preserving
branching, which, when combined with a fixed number of ta-
pering conduits, results in the proportion of nonconducting xy-
lem (i.e., heartwood) increasing from trunk to twig. (7) Within
the constraints of this architecture, the hydraulic resistance is
minimized according to the energy minimization principle.

The dashed line in Figure 4 shows the conduit taper versus
conductivity relationship for a WBE-type tree with a constant
number of conduits at every level (assumption 3). The triangle
on this curve corresponds to the specific conduit taper as-
sumed in the WBE model for adjacent ranks for a bifurcating
branch system (assumption 4). Comparing taper across more
distant ranks (e.g., twig versus trunk) would move the triangle
down the dashed line, because the taper would be amplified.
The WBE line falls below the equal area and velocity line
(solid line), meaning that conduit area will decrease and veloc-
ity will increase from trunk to twig.

The WBE model has generated much interest and some crit-
icism. Dodds et al. (2001) claimed that the energy mini-
mization principle could be achieved regardless of whether the
network is fractal. Moreover, when the assumption that the
network is a fractal is relaxed, the model no longer predicts
three-fourths-power scaling of metabolic rate with body mass.
Further critique by Kozlowski and Konarzewski (2004)
claimed that the assumption of size-invariance of the final
branch (assumption 5) results in metabolic rate scaling di-
rectly with body mass, not to the three-fourths power. Both pa-

pers also question whether three-fourths-power scaling exists
between metabolic rate and body mass.

A more basic limitation of the WBE model is that few, if
any, plants develop according to their assumptions. Leaves are
not equidistant from the base of the tree and apical dominance
of a central axis is the rule rather than the exception (assump-
tion 1). Daughter branches are not known to be shorter than the
parent branch by a specific ratio (assumption 2). Most con-
duits are much shorter than the plant, which means that the
number of conduits running in parallel is not necessarily con-
stant with height (assumption 3, McCulloh et al. 2003). This is
true even for Psilotum nudum, which otherwise might be a
plant with WBE structure (Schulte et al. 1987, McCulloh and
Sperry 2005). The assumption that hydraulic resistance is in-
dependent of plant height (assumption 4) is also inconsistent
with data, which show decreasing kL with size (Meinzer and
Grantz 1990, Saliendra et al 1995, Rust and Roloff 2002,
Mencuccini 2003). Moreover, this assumption seems mal-
adaptive: why should a 1-m sapling be penalized with the same
high resistance as its 100-m parent? Such a sapling would
quickly be outcompeted by rival saplings with less taper and
lower resistance than their parents.

Not surprisingly, some predictions of the WBE model are
incompatible with observations. The model predicts decreas-
ing conduit area and increasing sap velocity from trunk to twig
(Figure 4, dashed line). While this is qualitatively consistent
with diffuse-porous and coniferous trees, it is inconsistent
with the velocities of ring-porous trees, which slow distally
(Huber and Schmidt 1936, Andrade et al. 1998, McDonald et
al. 2002). The model requires that the proportion of non-
conducting wood area must increase from the trunk to the mi-
nor branches. This is necessary to make the tapering of a
constant number of conduits compatible with area-preserving
branching (assumption 6). The model predicts that trees will
become height limited when the basal sapwood area is forced
to rise to 100% of the trunk cross-sectional area. However, in
real trees, the heartwood area increases with age and does not
approach 0% in the trunks of the tallest trees (Hazenberg 1991,
Sellin 1994, Yang et al. 1994, Alemayehu et al. 1998, Paques
2001, Rigling et al. 2002, Perez Cordero and Kanninen 2003).

Despite these shortcomings, the WBE approach has intro-
duced important concepts to the study of hydraulic architec-
ture. Its authors were the first to imply that patterns in hydrau-
lic architecture have evolved to minimize the energy associ-
ated with water transport. They were also the first we know of
to consider quantitatively the important and potentially con-
flicting interaction between hydraulic architecture and bio-
mechanical stability. Future work should pursue these con-
cepts in line with a more anatomically and morphologically re-
alistic representation of architecture.

Murray’s law and energy minimization

Murray’s law provides a useful starting place for analyzing the
energy minimization principle in plants. Derived by Cecil
Murray for animal cardiovascular systems in 1926, this law
predicts that blood vessels should taper to maintain propor-
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Table 1. A list of some of the patterns in hydraulic architecture.

Patterns in hydraulic architecture

1. Stem-area-preserving branching (“da Vinci’s rule”)

2. Sap velocities increase distally in diffuse-porous and coniferous
species; sap velocities decrease distally in ring-porous species

3. Leaf specific hydraulic conductivity increases exponentially with
stem diameter

4. Conduit diameter increases with stem diameter

5. Leaf specific hydraulic conductance declines from the juvenile to
the mature developmental stage



tionality between the volume flow rate (Q) and the sum of the
conduit radii cubed (Σr3) at every branch level in order to
maximize hydraulic conductance for a given investment in
vascular tissue volume. For networks with constant Q at all
branch levels, Murray’s law predicts conservation of Σr3. In
deriving his law, Murray assumed that the wall thickness of the
vessels was negligible and that a cost of the vascular system
was in the metabolic maintenance of the blood. He further as-
sumed that the flow was laminar and the conductivity of the
piping was proportional to the Hagen-Poiseuille value. Impor-
tantly, Murray’s law does not predict how the branch system
ramifies or the lengths of individual branches. Rather, it pre-
dicts only the optimal tapering for a given branching architec-
ture and investment. This is less ambitious than the WBE
model, which specifies both taper and architecture. However,
because the branching architecture does not necessarily con-
form to the WBE conditions, the more limited approach of ap-
plying Murray’s law may be more informative.

Despite the differences between animal and plant vascular
networks, Murray’s law is applicable to xylem given a few ad-
ditional assumptions. Unlike animals, the major cost of the xy-
lem is not the fluid, but in the thick walls necessary to with-
stand the compressive forces caused by the negative pressures
associated with plant water transport. The proportionality be-
tween conduit dimensions (the ratio of wall thickness to con-
duit width) and cavitation resistance shown by Hacke et al.
(2001) means that for a given cavitation resistance, the total
wall volume should be proportional to the total lumen volume,
and Murray’s law will still apply (McCulloh et al. 2003). The
conductivity of plant conduits is substantially less than the
Hagen-Poiseuille value because of the added resistance of the
conduit end walls. Recent work, however, indicates that end
walls contribute approximately half of the total resistance to
flow across a wide range of conduit sizes (Sperry et al. 2005).
This means that the conductivity is still roughly proportional
to the Hagen-Poiseuille value, as required for Murray’s law to
be valid. Finally, it must be assumed that the xylem conduits
do not provide mechanical support to the plant in addition to
their transport role. Murray’s law does not take into account
any mechanical benefit of conduit structure and is inappropri-
ate for cases where conduits have multiple functions. Given
these assumptions, Murray’s law predicts the optimal conduit
taper for a given architecture and investment will conserve Σr3

in xylem conduits.
A hydraulic architecture that follows Murray’s law has a

conduit taper (distal/proximal radius) that is exactly equal to
the conductivity ratio (distal/proximal KL) as shown by the
dash-dotted 1:1 line in Figure 4. Plants that fall on this line will
have a conduit area profile that increases from trunk to twig,
like an inverted cone, and velocities that decrease distally. For
the WBE architecture with equal conduit numbers, Murray’s
law is achieved only if the conduits do not taper (Figure 4, in-
tersection of dash-dotted and dashed curves). This non-taper-
ing and energy-minimizing structure is what WBE assumed in
their first version of the model (West et al. 1997). Adding taper
in their revised version (West et al. 1999) moved their architec-
ture off the Murray’s law optimum and sacrificed efficiency.

The possibility that the number of conduits in parallel can
vary from trunk to twig complicates the application of Mur-
ray’s law. The “furcation number” (F) is defined as the ratio of
functional conduit number in daughter branches to adjacent
mother branches. In animals, where a single tube ramifies to
form the vascular system, F must be ≥ 2. In plants, the large
number of short conduits in parallel means that F is not neces-
sarily ≥ 2, nor the WBE value of 1. The only a priori restriction
is that F must be > 0. The dotted curves in Figure 5A show how
F influences the conductivity versus conduit taper relationship
(for adjacent branch ranks). The F = 1 curve is the WBE
model. Increasing F to 2 or 4 steepens the relationship, requir-
ing more taper for the same conductivity ratio (Figure 5A, F =
2 and F =  4 curves).

Furcation number is important, because, like conduit taper,
it influences the conductance per unit investment of the vascu-
lar system. The dotted curves in Figure 5B show how the con-
ductance of a vascular system of constant volume and identical
branching architecture changes with taper and F. With F fixed,
the optimal (maximum) conductance is reached at the Mur-
ray’s law taper. This is seen in the correspondence between the
taper at peak conductance of the dotted curves in Figure 5B,
and the taper where the dotted furcation curve and the Mur-
ray’s law line intersect in Figure 5A. Figure 5B also shows that
as F is increased (while vascular volume and branch architec-
ture are held constant), the Murray’s law maximum increases.
Networks with higher F in combination with Murray’s law
taper are more efficient. This results from fewer, wider con-
duits in the trunk that ramify into numerous, narrower conduits
distally.

The analysis in Figure 5 provides a new explanation of why
plants have tapering conduits and declining conductivities
moving from trunk to twig: this structure increases hydraulic
efficiency. Reducing conductivity ratio and steepening taper in
proportion moves plants to the lower left of Figure 5A and thus
to higher hydraulic conductance per unit investment (upper
left, Figure 5B). This is true regardless of whether plants man-
age to follow Murray’s law exactly. A corollary is that F
should be close to 1, if not greater. If plants had no conduit
taper, or widened their conduits distally in combination with
constant or increasing conductivities, they would move to the
upper right of Figure 5A and to lower conducting efficiencies
(lower right, Figure 5B), even if they obeyed Murray’s law.
This maladaptive hydraulic architecture would also be associ-
ated with an F value much less than 1. This advantage of con-
duit taper and declining conductivity complements its previ-
ously recognized significance in terms of controlling water
supply and managing water stress as discussed earlier.

To provide a preliminary assessment of where real xylem
networks fall with respect to F and conduit taper, we plotted
data from earlier studies (McCulloh et al. 2003, 2004) in Fig-
ure 5. Taper and conductivity ratio are shown for adjacent
ranks in Figure 5A. Taper versus relative hydraulic conduc-
tance is shown in Figure 5B, assuming for comparison the
same total volume of conduits and branching topography used
to calculate the dotted furcation trajectories. Furcation num-
bers in Figure 5 are not standardized for variation in branching
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pattern and so differ from values reported earlier for these data
(McCulloh et al. 2003, 2004).

The data are consistent with expected hydraulic patterns in
showing a conduit taper (diameter ratio < 1) and decreasing
conductivity (conductivity ratio < 1). Also as expected, F val-
ues were near 1 or above. The data generally fall on or some-
what below the Murray’s law 1:1 optimum, rather than above
it.

Overall, there is a strong trend for the xylem of free-stand-
ing trees to have the lowest F and thus the lowest conducting
efficiency, as compared with the high F and high efficiencies
of vine stems and compound leaves of the same vine and tree
species. This trend suggests that constraints on F and taper
limit the transport efficiency of free-standing stems relative to
vines and leaves. We consider this constraint in the next sec-
tion.

Hydraulic efficiency versus mechanical stability

There is a basic conflict between optimizing transport and
maintaining mechanical stability. The solid curve in Figure 5B
(equal Σr 2) represents the xylem network with area-preserv-
ing branching of its xylem conduits. Xylem networks above
this curve, although benefiting from greater conductance,
show area-increasing branching of conduits. If there is even a
loose proportionality between conduit area and total xylem
area, this will correspond with a small diameter trunk support-
ing a wider collective branch area. Such an “inverted cone”
area profile is mechanically unstable, regardless of branching
architecture, simply because this structure would be top-
heavy. For mechanical stability, branching should be at least
area-preserving (da Vinci’s rule), if not area-diminishing.

Vines and compound leaves can escape this trade-off be-
cause in both cases the xylem conduits are not significantly in-
volved in structural support. Vines remain aloft by clinging to
other plants, and compound leaves are supported largely by
turgor pressure and non-vascular sclerenchyma or collenchy-
ma. Accordingly, the vine and leaf data fall above the constant
area curve in Figure 5B. These xylem networks are free to ex-
ploit the greater efficiency of high F in combination with
near-optimal Murray tapering despite area-increasing branch-
ing of conduits. In contrast, the tree stem data generally lie be-
low the constant area curve, consistent with the need to main-
tain area-preserving or even area-decreasing branching of xy-
lem conduits. However, this mechanically “safe” structure
comes at the price of reduced conducting efficiency.

Within the three tree species (Figure 5), the data indicate a
trend toward higher F and greater efficiency moving from the
conifer (Abies concolor), to a diffuse-porous angiosperm
(Acer negundo) and finally to a ring-porous angiosperm (Frax-
inus pensylvanica). These data are consistent with the differ-
ent velocity profiles between these tree types. Both the dif-
fuse-porous and conifer species lie below the constant conduit
area line (Figure 5B, equal Σr2) with decreasing area and in-
creasing velocities from trunk to twig. In contrast, the ring-po-
rous species lies just above this constant area line, indicating
constant or slightly decreasing velocity distally. The switch to

a decelerating velocity profile in ring-porous trees is thus a
functional correlate of increasing conducting efficiency. The
data predict that the velocity profiles of the xylem of vines and
compound leaves should resemble that of the xylem of ring-
porous trees, but with an even greater deceleration of sap ve-
locity moving distally. However, we know of no velocity mea-
surements with which to evaluate this prediction.

The trend toward greater efficiency in trees with ring-porous
wood versus other trees is associated with a decrease in the
percentage of xylem area occupied by xylem conduits. In coni-
fers, conduits make up over 90% of the wood area, versus
about 25% in diffuse-porous trees, and only about 10% in the
xylem of ring-porous trees (McCulloh et al. 2004). This pro-
gressive decoupling of hydraulic and mechanical functions
may leave the conduit network free to achieve area-preserving
or even area-increasing conduit branching as required for
maximum conducting efficiency, while the overall xylem area
remains area-preserving or even area-diminishing for best me-
chanical support. This inference posits that the proportion of
conducting area versus total xylem area will increase from
trunk to twig in ring-porous trees, a trend opposite to assump-
tion 6 for the WBE architecture.

Figure 5B poses a conundrum with respect to the tree stem
data. Stems could maintain the same mechanically stable area-
profile simply by shifting to the left on this graph while keep-
ing the same position relative to the solid constant area curve
(i.e., near the Campsis radicans (L.) Seem. ex Bur. vine stem
data point). This would require increasing their taper and their
F. Although this shift would find them relatively farther from
the Murray optimum, it would nevertheless increase their con-
ducting efficiency without altering the area profile. There are
several possible adverse consequences with this configuration.
Such high taper may be unsustainable in the highly branched
shoot structure of trees. A taper of 0.7 (distal/proximal radius)
for adjacent branch ranks, if sustained across 10 branch levels,
results in a trunk vessel 25 times the diameter of a leaf vessel.
Such large diameters may be developmentally impossible, ei-
ther because of limits to cell size or because of limitations in-
herent in ring-like circumferential growth from a cambium
(McCulloh et al. 2004). Even if such large vessels were devel-
opmentally possible, they may be mechanically vulnerable
and certainly would be more vulnerable to freezing-induced
cavitation (Davis et al. 1999, Pittermann and Sperry 2003), if
not to cavitation induced by water stress (Sperry and Tyree
1990, Hargrave et al. 1994, Lo Gullo et al. 1995). In addition,
high F in highly branched tree stems would decrease the num-
ber of vessels running in parallel in the trunk relative to the rest
of the tree. Having fewer trunk vessels means less redundancy
in the event of local dysfunction to the trunk network.

That vines generally have wider vessels than trees is consis-
tent with their having greater taper and higher F. Mechanical
vulnerability of large vessels would have little adaptive signifi-
cance for vines, and many have anomalous cambial growth
that may accommodate development of exceptionally large
vessels. In addition, vine stems may be less branched than
trees and hence would have less amplification of taper and
furcation over multiple branch ranks.
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Concluding perspectives on architectural patterns

Consideration of the energy minimization principle and Mur-
ray’s law in the context of anatomy and mechanics provides
new insight into the architectural patterns summarized in Ta-
ble 1. The only valid explanation for why plants might follow
da Vinci’s rule of area-preserving branching may be that it sets
the limit to a mechanically stable area-profile. Even better
from the mechanical point of view would be area-diminishing
branching (Keller and Niordson 1966), a pattern that may ap-
ply better to the trunk and its major branches below the crown
(Shinozaki et al. 1964b). More precise measurements of how
total stem area, xylem area and conduit area change with
branching in different plant functional types would be useful
in the analysis of the effects of area profile on mechanical
stability.

Hydraulically, there seems to be no reason to follow da
Vinci’s rule, because greater conductance for a given vascular
investment can be achieved by area-increasing branching of
xylem conduits (Figure 5B). The data in Figure 1 show a sug-
gestive increase in area of the minor twigs, but because the
data are for total stem area, it is unclear whether this is a result
of increased conduit area relative to other tissues. Certainly the
vines and compound leaves measured show area-increasing
conduit branching (Figure 5, McCulloh et al. 2003). Free-
standing trees may follow da Vinci’s rule because it represents
the best compromise between conflicting mechanical versus
hydraulic optima.

The three patterns of conductivity, conduit diameter and sap
velocity (Table 1, Figures 2–4) all are consistent with an en-
ergy-minimizing hydraulic architecture subject to mechanical
constraints. A proportional decline in conductivity and con-
duit diameter from the trunk to twigs confers greater hydraulic
efficiency (Figure 5). The shift from a distally accelerating ve-
locity profile in conifer and diffuse-porous trees to a distally
decelerating velocity profile in ring-porous trees is indicative
of greater conducting efficiency in ring-porous wood. It re-
mains to be seen if more extensive sampling across these con-
trasting wood types (including vines) reinforces these con-
trasting patterns in sap velocity.

The relationship between conductivity ratio and taper (Fig-
ures 4 and 5) is conceptually useful for distinguishing archi-
tecturally different xylem types and comparing their structural
relationships with area profile and F. For example, Figure 4
provides a context for comparing the WBE architecture with
the many alternatives. This type of plot also provides a rela-
tively quick method of assessing the architectural type of real
plants. Measuring leaf-specific conductivities of different
branch ranks is relatively simple, and as long as the measured
conductivity remains constantly proportional to the Hagen-
Poiseuille value (Sperry et al. 2005), the measured conductiv-
ity ratio will bear the same relationship to conduit taper as cal-
culated for the various curves in Figures 4 and 5. Measuring
vessel diameter distributions is also straightforward. As long
as the distributions compared are of similar shape, the taper of
the population can be estimated from the mean diameter
across ranks. The limited data plotted in Figure 5 need to be

confirmed with more extensive measurements made specifi-
cally for this type of analysis.

Our examination of the WBE model and the application of
Murray’s law to plants suggests that a comprehensive theoreti-
cal model of hydraulic efficiency has yet to be established. The
WBE model, though properly ambitious in treating optimal
conduit taper, branching architecture and mechanics, fails by
ignoring anatomical and morphological realities such as vari-
able F and velocity profiles, apical dominance and other fea-
tures. Murray’s law is too restrictive because it only solves for
optimal taper for a given branching architecture and F. It does
not solve for the optimal architecture where taper, branching
pattern and F are all free to vary, nor does it consider mechan-
ics. Nevertheless, both exercises have provided new insights
and should help to structure further work.

The significance of any energy-minimizing design lies in
minimizing the cost of transpiration to the plant. Long ago,
Cowan (1982) recognized the importance of this cost for deter-
mining the optimal stomatal conductance of plants. Knowing
the cost of transpiration also allows water-use efficiency, the
quantity of CO2 assimilated per quantity of H2O transpired, to
be converted to a more meaningful ratio: quantity of CO2 as-
similated per quantity of CO2 expended to construct and sup-
port the transpiration stream. The latter more directly
measures the carbon acquisition versus water loss dilemma
confronted by land plants.

Accounting for the cost of transpiration is complex, and
Givnish’s (1986) work is the only thorough effort we know of
after Cowan (1982). Although both studies were commend-
able in their scope, they lacked many parameters of water rela-
tions and hydraulic architecture. A challenge for the future is
to apply the progress in plant hydraulics towards a cost–bene-
fit analysis of supplying the transpiration stream (Mencuccini
2003).
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