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

Vascular plants have shown a strong evolutionary trend towards increasing length in xylem conduits. Increasing

conduit length affects water transport in two opposing ways, creating a compromise that should ultimately define

an optimal conduit length. The most obvious effect of increased length is to decrease the sequential number of

separate conduits needed to traverse the entire pathway, and thereby to reduce the number of wall-crossings and

the hydraulic resistance to flow within the xylem. This is an essential evolutionary pressure towards the

development of the vessel, a conduit of multicellular origin whose length is not restricted by developmental

constraints. The vessel has been an essential component in all plant lineages, achieving transport tissues with very

high specific conductivity. A countering effect, however, arises from the partitioning of the cavitation response,

a process whereby individual xylem conduits drain of water and lose conducting capacity. Flow in the xylem is

down a gradient of negative pressure, which is necessarily most negative in the distal regions (i.e. near the foliage).

Cavitation can be caused directly by negative pressures, and results in a total loss of the hydraulic conductance

of the individual conduits within which it occurs. If cavitation is triggered by low pressure experienced only at the

very distal end of a long conduit, the conduit nevertheless loses its conducting capacity along its entire length.

Pathways composed of long conduits will therefore suffer greater total conductance loss for equivalent pressure

gradients, because the effects of cavitation are not effectively restricted to the tissue regions within which the

cavitation events are generated. By contrast, short conduits can restrict cavitation to distal regions, leaving trunk

and root tissues less seriously affected. The increased total conductance loss of a system made entirely of very long

conduits translates into a lower maximum rate of water transport in the xylem. The loss in hydraulic capacity

associated with failure to partition the flow pathway fully, and locally contain the effects of cavitation, theoretically

reaches a maximum of 50% for the extreme case in which a single set of conduits traverses the entire pathway.

Shorter conduits confine individual cavitation events to smaller regions and permit the pathway as a whole to have

a more gradual conductance loss in conjunction with the pressure gradient. A compromise exists between (1)

minimizing total conductance loss from cavitation via fine partitioning of the pathway with many tiers of short

conduits, and (2) reducing total wall resistance via coarse partitioning with a few tiers of long conduits. An analysis

is presented of the optimal number of end walls (i.e. mean conduit length relative to total pathway length) to

maximize transport capacity. The principle of optimal containment of cavitation also predicts that conduits should

not be of equal length in all portions of the pathway. The frequency of end walls should rather be proportional

to the magnitude of the water-potential gradient at each point, and conduits should be longest in the basal portion

(roots) and progressively shortened as they move up the stems to the foliage. These concepts have implications for

our understanding of the contrasting xylem anatomies of roots and shoots, as well as the limits to evolution for

increased hydraulic conductance per xylem cross-sectional area. They also indicate that to model the hydraulic

behaviour of plants accurately it is necessary to know the conduit length distribution in the water flux pathway

associated with species-specific xylem anatomy.

Key words: vessel length, water transport, cavitation, anatomical optimization, evolution of xylem, xylem

anatomy, hydraulic conductance.

I . 

1. The neglected dimension

This review focuses on understanding the role of

xylem conduit length in the hydraulic architecture of

plants. Other reviews have dealt extensively with the

topics of hydraulic segmentation, branching, re-

dundancy, cavitation and the cohesion–tension

mechanism of xylem transport. We discuss these

related topics only to the extent that is needed for

context, or where vessel length has a prominent role.

For more comprehensive treatments of these other

issues, the reader is referred to previous reviews
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6. Proof of Eqn 15 describing limited

cavitation containment 215
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(Zimmermann & Brown, 1971; Pickard, 1981;

Zimmermann, 1982, 1983; Pallardy, 1989; Tyree &

Sperry, 1989; Tyree & Ewers, 1991; Sperry, 1995;

Sperry et al., 1996; Tyree, 1997).

A direct evaluation of how conduit length affects

flow capacity has received scrutiny only for species

with tracheids as the sole type of conducting element

(Calkin et al., 1986). This has been due to both

technical and theoretical barriers. Accurate measure-

ment of the length of vessels is laborious, and the

most common methods are imperfect (Ewers &

Fisher, 1989a,b; Tyree, 1992). Consequently our

basic knowledge of vessel length is less detailed than

that of many other components of xylem anatomy



REVIEW Optimal conduit length 197

Q

Water

i =1

i =2

i =n

(b)(a) (c)

Q QPi

Pn –1

Pn

P2

P1

P0

Q Q

Rpit

Rpit

Rpit

Rpit

Rpit

li

ln

ln –1

l2

l1

l0

l1

l0

Rlumen(l)dl∫

l2

l1

Rlumen(l)dl∫

ln

ln –1

Rlumen(l)dl∫

Fig. 1. Idealized flow path divided into n discrete tiers of conduits. (a) The whole plant, engaged in water

transport. (b) The flow path described as a set of n conduit tiers. Only five conduits are visible in the drawing

for each individual tier, but these represent a full population of perhaps many thousands of conduits at each

height. (c) The resistance diagram used to discuss cavitation and flow in a multi-tiered pathway. Shown in the

diagram are the alternating pit and lumen resistances of n tiers, which add up to a fixed total resistance of the

pathway, R
!
, before cavitation. Total lumen resistance can be partitioned unequally among tiers, depending on

both individual tier length, as defined by the set of end-wall positions ²l
i
´, subdividing total pathway length L,

and possible variation in resistivity, R
lumen

(l ), along the pathway. Branching of the pathway in root and upper

canopy are not explicitly recognized in the resistance model, but the relevant effects can be accounted for by

variation in R
lumen

(l) and relative conduit length, ²l
i
´. As used in the text, the labelled resistances define the

partitioning of R
!

into a set of resistances, R
!.i

, for each tier. However, the actual resistance under dynamic

transport, R
i
, will be greater than this because of cavitation, as described by the function f(P). This increase

in resistance is calculated separately for each tier as determined by the most negative pressure in each tier, P
i
.

P
!
allows for variation in soil water potential in different analyses, so that ²P

i
´ depends on both soil water status

and transport dynamics. During transport, the flux of water through the pathway is Q, and is defined by Q ¯
∆P

i
}R

i
. We do not consider issues of capacitance, but instead consider steady-state conditions with Q equal

across all tiers. Discussions in the text concern the optimization of n and ²l
i
´ with respect to maximizing Q.

and hydraulic architecture (Baas, 1986). Equally

important, however, has been incomplete theoretical

development quantifying the direct importance of

conduit length to transport processes. In this review

we outline the broad patterns of conduit length over

evolutionary time and across modern ecological

groups. We also present a theoretical framework that

integrates vessel length into quantitative estimates of

hydraulic limitations to plant water-use and growth.

The concepts and approaches to estimating maxi-

mum transport capacity as limited by xylem sap

cavitation are dealt with in a standard fashion (Tyree,

1997; Sperry et al., 1998), but the explicit inclusion

of the way in which conduit length modifies the

cavitation response leads to new insights. We hope

that this discussion will draw the attention of future

studies to this often-neglected dimension.

2. Basic concepts

(a) The heuristic notion of vessel-tiers. The flow path

of a plant is typically composed of many thousands

of xylem conduits. At any given height there may be

thousands of conduits in a single cross section.

Conduits within a single section are usually not all

the same length but in fact have characteristic length

frequency profiles that are almost always skewed

towards shorter conduits (Zimmermann & Brown,

1971; Zimmermann & Jeje, 1981; Zimmermann,

1983; Ewers & Fisher, 1989b; Ewers et al., 1990).

However, a representative length can be determined

from such a frequency histogram and our principal

concern here is not with length variation within a

single axis segment but rather in the average number

of wall-crossings needed to traverse the pathway,
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Table 1. List of symbols and abbreviations used in water-transport studies

Variable Units Description

i – Index variable for tier number ranging from 1 to n
K kg MPa−" s−" Hydraulic conductance of whole pathway

K
!

kg MPa−" s−" Hydraulic conductance of whole pathway before cavitation

K
i

kg MPa−" s−" Hydraulic conductance of the ith tier

K
!.i

kg MPa−" s−" Hydraulic conductance of the ith tier before cavitation

K
lumen.i

kg MPa−" s−" Inverse of !R
lumen

(l )dl for the ith tier after cavitation

K
pit.i

kg MPa−" s−" Inverse of R
pit

after cavitation

R
pit

MPa s kg−" Pit-membrane resistance of crossing all the end walls of a single tier of

conduits

R
lumen

(l ) MPa s kg−" m−" Function describing lumen resistivity (i.e. length-specific resistance) at point

l along the flow pathway

R MPa s kg−" Total resistance after cavitation (ΣR
i
), reciprocal of K

R
!

MPa s kg−" Total resistance before cavitation (ΣR
!.i

), reciprocal of K
!

R
!.i

MPa s kg−" Resistance of ith tier before cavitation (R
pit

­!R
lumen

(l )dl over pathway

segment L
i
, reciprocal of K

!.i

R
i

MPa s kg−" Resistance of ith tier after cavitation (R
!.i

}f(P
i
)), reciprocal of K

i

¥R}¥L
i

MPa s kg−" m−" Partial derivative of total pathway resistance after cavitation with respect to

an incremental length-change of the ith tier

C m Conduit radius

D m Diameter of pore in pit-membrane

L m Length of total pathway

L
i

m Length of the ith tier

l m Linear position along length L
n – Number of conduit tiers in flow pathway

n
Qmax

– Optimal n maximizing Q at given !R
lumen

(l )dl}R
pit

OCLD – Optimal conduit tier-length distribution

Q kg s−" Water flux

Q
guess

kg s−" Value of Q to be tested by iterative routine for a viable water potential

gradient and sustainable cavitation while numerically searching for Q
max

Q
max

kg s−" Maximal water flux before cavitation collapse for any defined value of n and

conduit tier-length distribution ²l
i
´

Q$
max

kg s−" Maximal water flux based on Eqn 8. The cavitation dynamics are infinitely

partitioned as though n ¯ ¢, but K
!

is defined independently of nR
pit

Qn

max
kg s−" Q

max
as a function of n, with ²l

i
´ always an OCLD, and n controlling both Θ

and nR
pit

Qn=opt

max
kg s−" Qn

max
with n optimal for !R

lumen
(l )dl}R

pit

P MPa Water pressure

P
!

MPa Water pressure of source water entering plant flow pathway

P
i

MPa Water pressure of distal end of the ith conduit tier

P
k=!

MPa Water pressure at which total cavitation is reached

dP}dl MPa m−" Rate of change in P with distance along pathway

∆P MPa Discrete decrease in P over the entire water transport pathway

∆P
i

MPa Discrete decrease in P over the ith conduit tier

f(P) – Fractional conductivity left after cavitation

η MPa s Viscosity of water

ρ kg m−$ Density of water

σ MPa m Surface tension of water

Θ – Fractional reduction in Q
max

due solely to the lack of containment of

cavitation at the sites of origin

and how the mean length of all conduits affects the

containment of xylem failure via cavitation (Tyree &

Sperry, 1989). Water must pass from one set of

conduits to the next in longitudinal series to move

from the soil to the foliage, and we define the number

of tiers of conduits as the total pathway length

divided by the mean conduit length. We refer to tiers

of conduits as though they were organized discretely

with the ends of all conduits in a given tier beginning

and ending in the same cross sections (Fig. 1b). This

will simplify discussion and numerical evaluation,

but the reader should understand that, in most

plants, the ends of individual conduits are more

often randomly distributed longitudinally than lined

up in a transverse plane. In addition, the ‘end’ of a

conduit is really an extended region of overlap with

adjacent conduits (Zimmermann & Brown, 1971).

The degree to which these simplifications might

affect conclusions is discussed. We focus, in our

review and analysis, on the influence of conduit

tier structure on the conducting capacity of plant

xylem. We analyse how conducting capacity can be

optimized by varying the number of conduit tiers in

a plant pathway, and whether tiers should all have
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the same length, or whether individual tier length

should vary in a predictable manner along the flow

path from roots to leaves.

(b) Ohm’s law. The Ohm’s law analogy is generally

used to model the steady-state transport of water in

plant xylem (Passioura, 1988; Tyree & Ewers, 1991):

Q ¯ K∆P, Eqn 1

(Q, water flow through the xylem; K, is hydraulic

conductance; ∆P is total pressure drop across the

flow path.) The term K
!
will be used to refer to the

saturated K when there is no cavitation and all

conduits are functional.

(c) Conductances, resistances and resistivities. Re-

sistance and conductance units are simply the

reciprocals of each other: R ¯ 1}K. Any expression

in conductance units can be rewritten in terms of the

equivalent resistances, and vice versa. Each unit has

its preferential application, however. Flow, as

expressed in Eqn 1, is directly proportional to

conductance. Transport capacity and loss of capacity

due to cavitation are most commonly reported in the

literature in conductance units. However, when a

complex pathway such as multiple discrete tiers of

conduits is being analysed, resistances in series are

simply additive, whereas equivalent expressions in

conductance units are more complex. The related

term, resistivity, is defined as the length-specific

resistance of a pathway, and must be integrated over

the pathway length to determine total pathway

resistance.

(d) Lumen and pit resistances. The summation of

resistances in series associated with moving water

through plant xylem with multiple tiers of conduits

includes both the resistances of the conduit lumen

and those associated with crossing from one conduit

to the next through the interconduit pits. We define

a total wall-crossing resistance, R
pit

, associated with

all water in the pathway moving from one conduit

tier to the next (i.e. all conduits in a cross section are

included, and all water crosses one conduit wall,

once). Similarly, we define a resistivity, R
lumen

(l), to

represent the combined lumen of all conduits in any

given cross section. Note that the lumen resistivity is

defined as a function of of the linear position, l, along

the pathway, and need not be constant. To determine

the initial hydraulic conductance of an entire path-

way (before any cavitation) we must multiply R
pit

by

the number of conduit tiers (n), and integrate

R
lumen

(l) over the total pathway length (L) (Fig. 1c) :

K
!

¯
1

R
!

¯
1

nR
pit

­!L
!
R

lumen
(l)dl

Eqn 2

(e) The importance of conduit radius and length in

conductance. One of the most important determinants

of variation in hydraulic conductance between

different species has been the dependence of the

lumen resistivity on the fourth power of conduit

radius (C ) (Zimmermann, 1983; Vogel, 1988; Tyree

& Ewers, 1991). Because the cross-sectional space

occupied by a conduit is proportional only to C#, but

resistivity declines as the fourth power, large-

diameter conduits are far more efficient in water

transport per unit of ∆P. R
lumen

(l) is therefore related

to both the number of conduits in parallel and the

individual lumen radii (as expressed by the Hagen–

Poiseuille equation):

R
lumen

(l) ¯
8η

πρΣC%

Eqn 3

(η, the dynamic viscosity of water; ρ, the density of

water, which is included to convert volume to mass

flow, to be consistent with our units for Q.)

II.    



1. Nature and origin of xylem conduits

Photosynthesis, like most of the central pathways of

metabolism, arose in the seas; the invasion of

terrestrial environments was associated with the

evolution of new capabilities for water management

and the erect habit. Many of the anatomical features

needed to sustain complex land plants evolved

during the Ordovician and Silurian periods

(Edwards, 1993, 1996; Bateman et al., 1998),

including a water-resistant cuticle, stomatal pores

and primitive conducting strands, making it possible

for small plants to control their water content in

terrestrial environments.

A key to the evolution of larger, erect plant forms

was the origin of highly specialized vascular tissues

permitting the long-distance transport of water. This

was apparently a difficult and revolutionary inno-

vation, and all vascular plants are thought to be

monophyletic (Kenrick & Crane, 1997; Doyle,

1998). In the upper Silurian we find the first

appearance of xylem conduits in the form of

tracheids (Edwards & Davies, 1976): elongated

single cells specialized for transporting water under

negative pressure. To avoid implosion, the walls of

tracheids include secondary layers for thickening

and are impregnated with the stiffening agent lignin.

Lignified and thickened walls are both characteristic

of vascular plants (Gross, 1980; Edwards, 1993;

Doyle, 1998); in modern plants they are found in a

wide range of tissues, where they aid in protection

and support as well as transport. However, thick

lignified walls might first have evolved in response to

the collapsing forces of water under tension in the

early conduits (Raven, 1987; Bateman et al., 1998).

In the earliest vascular plant fossils, thickened,

lignified walls are found exclusively in central

conducting strands rather than peripheral locations,

where they would have contributed much more
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effectively to support (Niklas, 1997). Nevertheless,

lignin and secondary wall specializations made

possible the development of xylem tissues that are

capable of the dual functions still performed by the

tissue in extant species: (1) water transport under

negative pressure in specialized conduits, and (2)

withstanding the compressional forces of erect

morphologies and increasing size (Barghoon, 1964).

These new capacities unleashed the evolution of

modern plant habits as different lineages lifted their

photosynthetic and reproductive organs higher and

higher above ground.

The immature, living stages of xylem conduit

ontogeny produce the intricate cell wall structure of

contrasting thin porous regions of exposed primary

wall surrounded by thickened lignified regions of

secondary wall deposition that are essential to

function. However, at maturity the conduit cells die,

leaving open, unobstructed lumens for water flow

under negative pressure. Implosion is prevented by

the thick, lignified regions of the wall, whereas flow

between adjacent conduits (and other neighbouring

cell types) occurs through the thin and porous ‘pits ’

of the common wall. These pits consist of a porous

‘pit membrane’ derived from the compound middle

lamella of the adjacent cells, which divides opposing

pit ‘chambers’ formed by the openings in the

secondary walls. The over-arching secondary walls

surrounding the chambers of bordered pits allow

maximum pit membrane surface area without unduly

weakening the strength of the wall against implosion

(Mauseth, 1988).

The xylem conduits thus form an extensive system

of capillaries, each closed at both ends, that overlap

and form a network ramifying throughout the plant

body. For long-distance transport, water flows most

of the time in the large, unobstructed lumen of the

capillaries, but must also cross through interconduit

pits at a frequency determined by the length of the

individual conduits relative to the overall pathway.

Consequently, the hydraulic resistance to flow in the

xylem has two distinct components: (1) resistance to

flow in the lumen and (2) crossing the thin, but much

more restrictive, microporous pit membranes of the

interconduit pits (Eqn 2).

2. Increasing hydraulic conductance with increasing

diameter and length

(a) Evolutionary trends in tracheid dimensions. If we

look at the early fossil record, there is a trend

towards ever more specialized tracheids permitting

more efficient conducting tissues (Niklas, 1985). The

most easily interpreted feature of this record is the

increase in tracheid diameter with time. In the

earliest erect plants, mean tracheid diameter

increases severalfold from the Upper Silurian to the

Upper Devonian (Niklas, 1985). From the Hagen-

Poiseuille equation (Eqn 3), a doubling in diameter

translates to a decrease in lumen resistivity to 1}16.

Associated with the increase in diameter is an implied

increase in length (Bailey, 1953), which would

decrease the contribution of R
pit

to total xylem

resistance (Eqn 2) by reducing the number of times

that water must cross between conduit lumens.

Many extant taxa still rely exclusively on tracheids

for water transport, and by the end of the Devonian,

tracheid diameter in several lineages had reached a

plateau at values comparable to those in modern

forms (Niklas, 1985). The limitation to this evol-

utionary trend is illustrated by recent studies

comparing the conducting capacity of the lumen

with that of the interconduit pits connecting adjacent

lumens through overlapping walls (Gibson et al.,

1984; Calkin et al., 1986; Schulte & Gibson, 1987;

Veres, 1990). These areas of overlap might actually

span up to 50% of the total tracheid length (Schulte

et al., 1987), with pit membranes occupying up to

80% of the contact zone. Nevertheless, as conduit

radius increases, the capacity of the lumen for water

transport increases under a fourth-power law,

whereas the contact surface area determining the

total interconduit pit transport capacity increases

only linearly. Consequently, at large conduit

diameters, the pit resistance becomes increasingly

limiting, contributing 50% or more of the total

hydraulic resistance of the pathway (Calkin et al.,

1986). Selective pressure to reduce pit resistance

presumably resulted in the evolution of longer xylem

conduits, to reduce the number of wall crossings in

the flow pathway (Eqns 2 and 3).

However, it seems that developmental constraints

put an upper limit of only a few centimetres (and

more commonly a few millimetres) on the potential

length of individual tracheids, and thereby on the

ultimate conducting efficiency that can be attained

by xylem tissues composed only of tracheids (Bailey,

1953). Moreover, in wood composed exclusively of

tracheids, the same relatively homogeneous tissue is

performing both transport and support functions. In

the Coniferales, one of the most arborescent groups

using only tracheids for water transport, the

tracheids are actually rather short and narrow

compared with tracheids of many herbaceous taxa,

and have relatively thick walls to enhance support

(Bailey, 1953).

(b) Origin of the vessel. The solution to this

limitation on water transport was the evolution of a

new type of conduit, the vessel, but this new

structure is not clearly present in the fossil record

until the sudden proliferation of the gnetophytes

and, especially, the angiosperms, in the Jurassic and

Cretaceous. Vessels, like tracheids, are dead at

maturity and form an extensive, overlapping system

of micro-capillaries. Unlike tracheids, vessels are

multicellular in origin. They are composed of

hundreds or thousands of individual ‘vessel
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elements’ stacked in vertical files. Vessel members

evolved from tracheids by the progressive enlarge-

ment of interconduit pits and the degradation of pit

membranes to form open perforation plates (Bailey

& Tupper, 1918). The individual members at the top

and bottom of the vessel retain their end walls and

define the total length of the vessel. It is important to

realize that, although these intermittent end walls

define the length of the vessel, water, in moving from

one vessel to the next, does not pass primarily

through the end walls themselves, but rather through

extensive regions of overlap (Zimmermann, 1978).

Like tracheids, vessels must overlap for a large

fraction of their length to provide surface area for

interconduit pits, but, in contrast with tracheids,

vessels can produce unobstructed lumen of indefinite

length, tremendously reducing the number of pit-

membrane crossings in the flow path. This increased

conduit length made possible xylem tissues with

unprecedented lumen diameter and conducting

efficiency (Ewers, 1985), and the development of

more complex xylem tissues with vessel elements

specialized for water conduction and fibres

specialized for support (Bailey & Tupper, 1918;

Baas, 1986). Vessels apparently evolved indepen-

dently in several vascular lineages (Bailey, 1953;

Gifford & Foster, 1989). However, they are most

abundant and specialized in structure within the

angiosperms, in which they have had an important

role in the morphological plasticity and adaptive

radiation of this group (Cronquist, 1988).

Modern plants show a tremendous range in the

dimensions of vessels. Vessel radii can vary by as

much as two orders of magnitude, from 2 or 3 µm up

to 250 µm in different plant species (Ewers &

Cruziat, 1991). Conduits with smaller radii are more

resistant to cavitation by freezing stress (Hammel,

1967; Ewers, 1985; Lo Gullo & Salleo, 1993; Davis

et al., 1999) and there is a strong correlation of

decreasing conduit radius with latitude, or increased

radius with specialized habits requiring very high

conducting efficiency per unit stem cross section,

such as lianas (Carlquist, 1975; Baas, 1986; Ewers et

al., 1990; Ewers & Fisher, 1991; Chiu & Ewers,

1992). Vessels show an even greater range of lengths,

spanning four orders of magnitude from 5 mm to

5 m (Zimmermann & Jeje, 1981). It seems likely that

the much greater range in length than in radius is

due in part to the extreme efficiency of lumen

transport in large diameter vessels, and the need to

reduce pit resistance in parallel to realize this benefit

(Eqns 2 and 3).

3. Functional limitations to increasing vessel length

(a) Safety versus efficiency. Many modern angio-

sperms exist in which a few individual vessels can

span the entire height of a tall tree or vine (Handley,

1936; Greenidge, 1952; Zimmermann & Jeje, 1981;

Ewers et al., 1991). However, such vessels are rare,

even in the plants in which they occur, and represent

an extreme tail on the distribution of vessel lengths

in the plant body, most of which are relatively short.

Are there liabilities to excessive vessel length that

limit the directional evolution for more efficient

conduits? Earlier work on this issue emphasized a

compromise between safety from damage on the one

hand, and hydraulic efficiency on the other

(Zimmermann, 1983). The length of the conduits

has major implications for methods of control of

damage and leakage in the transport system.

It is the nature of transport under negative

pressure that air will tend to leak into the conduit

network rather than the fluid leaking out. In the

thickened wall regions, entry of air into the conduit

lumen is unlikely owing to the impregnation of the

wall matrix with lignin. Any pores that happened to

be continuous through the thick wall are probably

less than a few nanometers in diameter and capable

of excluding air entry by capillary force (Oertli,

1971; Pickard, 1981). Inevitably, however, the walls

of some conduits become damaged during normal

plant development. This happens, for example, by

the rupture of protoxylem conduits during organ

expansion, and by the abscission of leaves and fine

roots. In addition, conduits become injured by

herbivory, pathogen action and storm damage.

The ruptured conduits allow air to leak in because

their lumen diameters are much too large to establish

sufficient capillary force to hold water under signifi-

cant negative pressure. As the water is withdrawn

from the damaged conduit, the conduit becomes

entirely filled with air or embolized. In this cir-

cumstance, the interconduit pits reveal their essential

function as check valves, anchoring the air–water

meniscus by capillary forces in the relatively small

pores of cellulosic mesh of the pit membranes. If the

pit membranes have a torus–margo structure (as in

many gymnosperms), capillary forces in the porous

and peripheral margo aspirate the membrane so that

the pit opening becomes blocked by the central

thickened torus. By either mechanism, the check-

valve function of the interconduit pits allows nega-

tive pressures to persist in the undamaged conduit

system (Zimmermann, 1983).

Because damage at a point source in the conduit

network causes dysfunction in a large fraction, but

not all, of the conduits at a single level in the

pathway, the full magnitude of lost hydraulic

conductance in the pathway as a whole is highly

sensitive to conduit length. For example, if a point

injury damaged 50% of the conduits, and a single set

of conduits traversed the entire flow pathway, then

total conducting ability would be reduced by a full

50%. By contrast, if 10 conduit lengths were needed

to traverse the entire pathway, and the injury was

sufficiently local to affect only one of these 10 tiers of

conduits with the same 50% damage, then the loss of
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Fig. 2. Cavitation vulnerability functions showing the rate

of loss in total conductance with increasingly negative

xylem pressure. Dotted line, linear vulnerability function,

K}K
!
¯ 1­mP with m ¯ 0±4; solid line, Weibull function,

K}K
!

¯ exp[®(®P}d)c], with d ¯1±2 and c ¯ 2±5.

hydraulic conductance to the entire pathway would

be just under 9%. Although the level of physical

damage is the same in both cases, the difference in

effect is a simple consequence of containment of the

damage to a local region by short conduits, and the

way in which local resistances are additive in series

(Zimmermann, 1983). Thus, conducting systems

composed of extremely long conduits are extremely

susceptible to failure from mechanical point-injuries

and pathogen attack anywhere along the pathway

(see also Tyree et al., 1994a). Interestingly, some of

the most marked examples of species decline from

vascular disease have occurred in ring-porous trees

in which the functional xylem is composed of a

relatively small number of vessels with large

diameters and great length, namely American elm

and chestnut (Zimmermann, 1983).

(b) Containment of cavitation and embolism. There

is, however, a less obvious but more ubiquitous

problem with long xylem conduits than sensitivity to

injury. This arises because the transport system is

subject to intrinsic dysfunction from cavitation.

Cavitation is the vapourizing of liquid xylem sap that

is under negative pressure; it results in a gas-filled

or embolized conduit. As pressures become

increasingly negative during water stress, cavitation

occurs conduit by conduit and there is a progressive

loss of hydraulic conductivity. The rate of con-

ductance loss by whole tissues is usually charac-

terized by a ‘vulnerability curve’ that describes the

cumulative loss of xylem conductance with declining

negative pressure (Fig. 2). Cavitation reduces the

initial conductance, and the effects are usually

described in terms of fractional loss as a function of

negative pressure:

K

K
!

¯ f(P) Eqn 4

Both the exact shape of f(P) and the range of P over

which loss occurs is highly species-specific. Signifi-

cant cavitation can occur in plants under natural

water stress conditions (Yang & Tyree, 1993;

Mencuccini & Comstock, 1997; Kolb & Sperry,

1999a; Hacke et al., 2000).

There is evidence that the cause of cavitation is the

failure of the check-valve function of interconduit

pits in confining gas to embolized conduits (Crombie

et al., 1985; Sperry & Tyree, 1988, 1990; Jarbeau et

al., 1995; Sperry et al., 1996). These pits can exclude

an air}water interface up to a critical negative xylem

pressure (P
critical

) at which point air leaks through the

seal and nucleates cavitation in the adjacent conduit.

For those non-gymnosperm pits in which the sealing

is apparently by capillary action alone, P
critical

is

given by the capillary equation (Tyree & Sperry,

1989):

P
critical

¯
®cos (α)4σ

D
Eqn 5

(D, is the largest pore diameter crossing the pit

membrane or conduit wall ; σ, the surface tension

of water (7±28¬10−) MPa m at 20°C); α, the

contact angle between water and the pore wall,

which is usually assumed to be zero for cellulosic

wall material.) Plants from different ecological

settings typically have minimum values of xylem

pressure reaching perhaps ®1±0 MPa in mesophytes,

and as low as ®6 or ®7 MPa in some xerophytes.

This would require values of D smaller than 0±3–

0±05 µm, respectively (α¯0). Even for themesophyte

expecting minimal stress from negative pressures,

this corresponds to pore sizes determined for the pit

membranes (Sperry & Tyree, 1988; Jarbeau et al.,

1995), but is much smaller than the open lumen of

the conduit itself, which ranges from 5 to 500 µm in

diameter. D is apparently a feature of conduit

structure that is highly adaptable in modern plants,

because cavitation pressures show strong patterns of

variation between species, often correlated with the

aridity of different habitats (Tyree et al., 1994b;

Jarbeau et al., 1995; Linton et al., 1998; Kolb &

Sperry, 1999a). In gymnosperm pits, P
critical

is

probably related to the elasticity of the pit membrane

because evidence suggests that slippage of the torus

from its blocking position over the pit aperture

allows air through to cause cavitation (Sperry &

Tyree, 1990).

There is stark conflict between the two functions

of interconduit pits. On the one hand they must be as

permeable as possible to the passage of water to

minimize R
pit

(Eqn 2) and facilitate the supply of

water to foliage. This would be achieved by maxi-

mizing D of pit membrane pores (Eqn 5). On the

other hand, D cannot be too large or these same pits

will be too permeable to an air}water interface. The

same conflict presumably occurs for gymnosperm

pits, in which a greater permeability of the torus–

margo pit membrane to water might be achieved at

the expense of a weaker pit membrane that allows
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more ready slippage of the torus (Sperry & Tyree,

1990). The end result of this compromise between

hydraulic efficiency and safety should be a pit

structure that is only as protective of cavitation as it

has to be to avoid excessive cavitation by the xylem

pressures experienced by the plant in its habitat.

How might dysfunction by cavitation constrain

conduit length? Because water transport is driven by

a gradient in decreasing pressure, pressures are

lowest and cavitation is more likely in the distal

regions of the plant (assuming equal resistance to

cavitation along the flow path). If conduits are short,

high levels of cavitation might be restricted to these

distal regions (Salleo & Lo Gullo, 1983; Salleo,

1984). If they are very long, conductance loss might

extend back along the pathway for great distances

and include regions where the local pressures were

not low enough to cause cavitation. Therefore, the

cavitation vulnerability curve, the pressure gradient

associated with transport, and the length of the

xylem conduits interact to determine a degree of

conductance loss and the transport capacity of the

conduit network.

III.     

  

1. Cavitation is linked to the driving force for

transport

The vulnerability of the xylem to cavitation limits

the sustainable negative pressures within it, and

therefore limits the maximum driving force for

transport (∆P) and the maximum flow rate (Q
max

)

(Tyree & Sperry, 1988; Sperry et al., 1998). The

actual flow rates can approach Q
max

on a daily or

seasonal basis, suggesting that this hydraulic limi-

tation is important in limiting gas exchange in many

species (Tyree & Sperry, 1988; Sperry et al., 1993;

Tyree et al., 1993, 1994b; Cochard et al., 1995;

Saliendra et al., 1995; Lu et al., 1996; Meinzer et al.,

1997; Kolb & Sperry, 1999b).

All of these analyses, whether evaluating Q
max

itself, or ∆P required at a defined, submaximal Q,

require a simultaneous solution of Eqns 1 and 4.

Depending on the complexity of the function f(P),

this is sometimes done analytically or else by using

numerical approximations. Many studies have div-

ided the overall pathway into two or more sequential

regions on the basis of concepts of hydraulic

segmentation in either R
lumen

(l) (Zimmermann &

Brown, 1971; Zimmermann, 1983; Ewers &

Zimmerman, 1984; Salleo, 1984; Sperry, 1986;

Sellin, 1988; Lo Gullo, 1989; Cochard et al., 1992;

Meinzer et al., 1992; Yang & Tyree, 1994; Joyce &

Steiner, 1995; Aloni et al., 1997) or f(P) (Tyree et

al., 1993; Mencuccini & Comstock, 1997; Sperry &

Ikeda, 1997; Tsuda & Tyree, 1997; Linton et al.,

1998; Linton & Nobel, 1999) in different parts of the

pathway. This usually amounts to dividing the

pathway into units defined by organs (i.e. root,

trunk, branch, twig and petiole).

However, most of these analyses have not directly

addressed the importance of conduit length. Con-

sider a plant in which all conduits are as long as the

flow path from roots to leaves. As the flow rate

through the xylem is increased and distal pressures

become more negative, air-seeding events pre-

cipitating cavitation will occur first in the leaves and

distal twigs, yet the consequent reduction in hy-

draulic conductivity will extend all the way to the

roots. In consequence, the reduction in total con-

ductance and Q
max

will be substantially greater than

in a plant with shorter xylem conduits that confine

the loss of conductivity to the distal portion of the

pathway. Conduit length might, in many instances,

correlate with other aspects of hydraulic segmen-

tation, but cannot be assumed to do so a priori (Aloni

& Griffith, 1991).

2. Transport models and extreme assumptions about

conduit length

Although previous analyses of Q
max

have not directly

addressed the importance of conduit length, the

partitioning of the flow pathway into separate

conduit populations is the universal condition of all

vascular plants. Depending on species’ anatomy, the

number of conduit lengths (n) needed to traverse the

entire pathway can vary from a few coarse divisions

to many hundreds of fine divisions. Depending on

the mathematical approach, most analyses of Q
max

have made implicit assumptions about conduit

length without explicitly discussing this condition,

and they have, in fact, dealt primarily with the

theoretical extremes.

(a) Unitary cavitation response (n¯1). Most studies

have used this approach, modified only indirectly by

the inclusion of other concepts of hydraulic seg-

mentation as discussed above. Jones & Sutherland

(1991) emphasized that cavitation was not only

expected as a consequence of soil water stress but

would also be a direct consequence of a plant’s own

stomatal behaviour and water-transport processes.

Although this was not stated explicitly, these authors

dealt with a unitary response as though a single

discrete tier of vessels traversed the entire pathway

such that n¯1. This represents the coarsest par-

titioning possible, and the entire pathway would then

cavitate on the basis of the most negative pressures

anywhere in the plant. Use of this system with a

linear f(P) (Fig. 2, dotted line; f(P) ¯ 1­mP, where

m is the slope of the cavitation response) permits the

direct simultaneous solution of Eqns 1 and 4 (see

Appendix). The general expression relating the

dependence of Q on leaf xylem pressure (P
"
) can be

used to calculate the partial derivative of Q with
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respect to P
"
(δQ}δP

"
), and the value of P

"
associated

with the maximum possible Q :

P
"
!Qmax

¯®
1®mP

!

2m
Eqn 6

The nomenclature here follows that diagrammed in

Fig. 1c (only in this single-tiered case n ¯ 1 and

P
n
¯P

"
), with P

!
representing the pressure equivalent

of total water potential in the soil, P
"

the most

negative xylem pressure reached at the distal end of

the xylem pathway within the plant (generally the

leaf), and m the slope of the cavitation response. This

expression has some interesting implications, be-

cause substituting it back into the simultaneous

solution of Eqns 1 and 4 leads directly to (see

Appendix):

Q
max

¯K
!0K

K
!

1∆P

¯K
!00.5

P!K=!
®P

!

P!K=!

1 ["#(P!
®P!K=!

)] Eqn 7

(Q
max

, the maximum allowable flow for n ¯ 1;

P!K=!
, the negative pressure at which cavitation

would reach 100%.) This tells us, first of all, that

achieving maximum Q necessitates high levels of

total conductance loss. This loss would be a constant

value of 50% throughout the pathway at P
!
¯ 0, and

would be even larger as soil water potential declined.

The magnitude of ∆P associated with this 50%

conductance loss would be just halfway to that which

would cause 100% cavitation.

(b) Infinitely partitioned response (n ¯ ¢). Sperry

et al. (1998) recognized that, in most plants,

cavitation becomes progressively greater in distal

portions in comparison with basal portions of

the plant owing to the pressure gradient. They

incorporated an integral calculation, matric flux

potential (Campbell, 1985), in which each

infinitesimally short longitudinal element along the

pathway possesses an independent cavitation re-

sponse to its own pressure. The maximum value of Q

under matric flux is :

Q$
max

¯ K
!
!P!
P!K=!

f(P) dP Eqn 8

(Q$
max

represents the flow rate that could be achieved

if cavitation were completely restricted to the sites of

origin.) With regard to Fig. 1c, Q$
max

embodies a

contradiction. The cavitation response proceeds as

though the pathway were divided into an infinite

number of tiers. Clearly if n were infinite, however,

pit resistance as defined in Eqn 2 would be infinite

and Q would be zero. Eqn 8 thus represents a

theoretical endpoint for cavitation dynamics, but K
!

must be assigned an empirical value. Nevertheless,

matric flux is an important theoretical reference

point and is an excellent computational method

when n is large. With the use of the same linear f(P)
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Fig. 3. Gradients of xylem pressure (left-hand y-axis) and

fractional conductivity loss from cavitation (right-hand y-

axis) associated with two extreme concepts of cavitation

containment. In both cases the profiles shown are those

that would be present at Q
max

, but the superior cavitation

containment in (b) actually allows a value of Q
max

twice as

large as that in (a). (a) A unitary response with no

cavitation containment. Flux dynamics were modelled in

accordance with Eqns 6 and 7. Conductivity in the entire

pathway was reduced on the basis of the single lowest

pressure at the distal end of the pathway (n ¯ 1). (b) A

pathway with perfect cavitation containment, in which

flow was modelled by using matric flux (Eqn 9), such that

each infinitesimal length element had a unique con-

ductivity on the basis of its own xylem pressure only

(n¯¢). All other aspects of initial conductivity before

cavitation, and the cavitation vulnerability, f(P), are

identical in (a) and (b). Solid lines, P ; dotted lines, f(P).

discussed above for Eqns 6 and 7, Eqn 8 is equivalent

to (see Appendix):

Q$
max

¯K
!0K

K
!

1∆P

¯K
!00.5

P!K=!
®P

!

P!K=!

1 (P!
®P!K=!

) Eqn 9

Of interest here is that the middle factor, cor-

responding to K}K
!
, is identical between Eqn 9 and

the single-tier model (Eqn 7). This is because Q
max

is

dependent on the product of f(P) and ∆P, and there

is a direct compromise between these two factors.

With the simple linear slope used here for f(P), the

product is always maximized by sacrificing exactly

half of the initial value of K
!
during the development

of an optimal ∆P. Of crucial importance is the fact

that, with equivalent parameterization of the path-

way (i.e. K
!
, m and P

!
), Q$

max
is twice Q

max
calculated

for a unitary cavitation response. This difference is

entirely attributable to the greater ∆P predicted in

Eqn 9 compared with Eqn 7 as explained in the next

section.

(c) ∆P and cavitation containment. These major

differences between the predictions of ∆P for Eqns 7

and 9 can be understood by examining the pathway

profiles of P and the remaining conductivity after
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cavitation associated with Q
max

in the two different

extremes (Fig. 3a,b). For the single-tiered (n ¯ 1)

model there is no cavitation containment, and

pathway conductance is determined by the most

negative pressure in the plant. This results in a

conductivity reduction that is uniform throughout

the pathway (Fig. 3a, dotted line). Because con-

ductivity and Q are both constant throughout the

pathway, the xylem pressure profile is also linear

throughout (Fig. 3a, solid line). Total ∆P across the

whole pathway cannot be increased further without

actually causing a decrease in Q owing to an excessive

reduction in conductivity throughout the pathway.

By contrast, the matric flux model (n ¯ ¢)

assumes that cavitation at each point depends only

on P at that point and that there is perfect cavitation

containment. In the basal portion of the pathway, P

is still close to P
!

and conductivity is initially very

high in Fig. 3b. As P becomes more negative moving

downstream, the degree of cavitation increases in

exact proportion, so that the pressure and con-

ductivity profiles (Fig. 3b, solid and dotted lines,

respectively) are superimposed on one another.

Although conductivity has a markedly different

profile in the two cases, which is consistent with the

summary Eqns 7 and 9, the total conductance loss of

the entire pathway at Q
max

is identical. However,

because ∆P has twice the magnitude in Fig. 3b, Q$
max

,

with perfect cavitation containment, is twice as great

as Q
max

for the unitary response with no cavitation

containment.

At the extreme end of the flow path in Fig. 3b is a

pressure that causes 100% cavitation. This seems

like a contradiction, because Q must be constant

throughout the pathway – but how can Q be greater

than zero when K}K
!

¯ 0? The answer is that this

is merely a boundary condition at the end of the flow

path, and there is no flow actually passing through

that point. The apparent paradox arises only because

we are evaluating a limit that defines Q$
max

. The

benefit of high n lies, then, in the high K maintained

in the basal portion of the pathway, and the

restriction of cavitation to elements of infinitesimally

short length, allowing the very steep final gradient in

P at the distal end and the much larger total ∆P over

the whole pathway. This results in a higher Q
max

.

Neither of the theoretical extremes n ¯ 1 and

n¯¢ recognize the real anatomy of the xylem, in

which conduit length divides the pathway into many

tiers that can partly, but not completely, restrict the

spread of damage from the sites of cavitation origin.

All real plants therefore lie somewhere between the

extreme predictions of Eqns 7 and 9.

IV.     

 

1. Framing questions of optimal conduit length

In this section we evaluate maximum transport rates

in the xylem when the effects of vessel length are

explicitly included in determining both initial re-

sistance and the dynamics of cavitation throughout

the pathway. For the intermediate cases of 1 !n!¢
it is more difficult to develop analytic solutions

such as those already detailed for the extremes.

Consequently, we rely extensively in this section on

the results of a numerical simulation model to define

these effects initially for linear f(P) (Fig. 2, dotted

line). We demonstrate that explicit expressions such

as Eqns 7 and 9 (but for any n), can, in fact, be

derived by inductive logic from these simulation

results, and verify that these general expressions are

consistent with the analytic solutions for the cases

n ¯ 1, 2 and ¢. We conclude this section with a

discussion of the same processes when the cavitation

vulnerability function, f(P), has a more typical,

curvilinear shape (Fig. 2, solid line).

We shall ultimately develop an expression for

optimal n in terms of a compromise between the

positive effects of containment of cavitation, and the

negative effects of increased initial resistance. The

increased initial resistance is simply modelled as

nR
pit

, but the containment of cavitation has subtler

aspects that must be developed in some detail. These

questions are made more complex because, once the

pathway is divided into two or more tiers, we must

concern ourselves not only with the value of n but

also with the precise placement of the end walls of

each tier at l
"
, l

#
, …, l

n
(Fig. 1c). Although the tiers

are shown schematically in Fig. 1c as though they

were all of equal length, an examination of Fig. 3b

suggests that uniform tier length is unlikely to be an

optimal solution. The advantage of partitioning the

pathway is in preventing distal water potentials from

affecting the conductance in proximal portions of the

flow path. If the water potential gradient through the

plant is curvilinear, with more rapid changes in the

distal regions, then the benefits of partitioning are

greater distally, where dP}dl is steeper. We develop

this concept explicitly towards a mathematical

definition of optimal conduit tier-length distribution

(OCLD) before returning to a final analysis of the

optimal value for n itself.

2. A numerical model for flow through n conduit tiers

(a) Model structure. We developed a numerical model

based on a very simple representation of the flow

path (Fig. 1c) that has the following characteristics:

(1) uniform lumen resistivity (R
lumen

(l)dl)

throughout its length;

(2) fixed total lumen resistance (before cavitation)

and length (L) ;

(3) uniform vulnerability to loss of hydraulic

conductance due to cavitation with decreasing xylem

pressure, f(P) (in our initial discussions, we focus

exclusively on linear f(P), returning to curvilinear

f(P) in a concluding section);
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Fig. 4. Θ, the limitation imposed on Q
max

by the incomplete

containment of cavitation at the sites of origin. Θ is a

function of both n and the conduit tier-length distribution,

²l
i
´, and reflects solely the effects of n on cavitation

dynamics while excluding the effects of nR
pit

(R
pit

was set

to 0). Maximal flow relative to which limitation is defined

is an axis with the same K
!

and f(P) but exhibiting

cavitation dynamics as though n ¯ ¢. This reference flux

was calculated by using matric flux potential (Eqn 8). (a)

Linear cavitation vulnerability f(P) ; Θ is calculated for

pathways with a range of n from 1 to 50, and with ²l
i
´

uniform (closed symbols), optimal (open symbols) or

‘ inverted-optimal’ (symbols containing a­sign) along the

axis. (b) Weibull function f(P) ; uniform-CLD, closed

diamonds; OCLD, open diamonds; inverted OCLD,

hatched diamonds; linear OCLD, crosses. The latter is a

hybrid analysis (I$ ) in which actual cavitation follows the

Weibull function f(P) but the ²l
i
´ of the pathway is that

defined as optimal under linear, not Weibull function, f(P)

(Eqn 14).

(4) steady-state water flux (Q) ;

(5) a defined number of conduit tiers with all

conduit end walls in common planes and a single

conduit length class within each tier.

The concept of solving for water potential

gradients and flow rates in a multi-tiered pathway is

similar to that discussed above in the single-tiered

case: We must solve Eqns 1 and 4 simultaneously:

Q ¯ K∆P ¯
1

Σn

i="
R

i

(P
!
®P

n
) Eqn 10

(ΣR
i
, the sum of final resistances in each tier after

cavitation; P
!
®P

n
, the total ∆P across all tiers

in the pathway.) However, the situation is greatly

complicated for the multi-tiered pathway because

solving for ΣR
i

requires solving for an array of n

values of P
i
, which determine the different levels of

cavitation in each discrete tier. Lacking a direct

solution to the array ²P
i
´, we determined it by

numerical approximation.

Because Q is assumed to be in steady state

throughout the pathway, Q must conform not only

to Eqn 10 but also to the analogous expressions for

each tier individually:

Q¯
f(P

"
)

R
!."

(P
!
®P

"
)¯

f(P
#
)

R
!.#

(P
"
®P

#
)…

¯
f(P

n
)

R
!.n

(P
n−"

®P
n
) Eqn 11

R
!.i

is calculated, following the schematic in Fig. 1c,

as :

R
!.i

¯R
pit

­!li
l(i−")

R
lumen

(l) dl Eqn 12

(b) Model solution. In most applications, we were

interested in Q
max

, the highest possible value of Q

consistent with Eqn 10 for a system composed of n

conduit tiers. This was done by an iterative search

algorithm that first postulated a possible value of Q

(Q
guess

), and then performed simultaneous solutions

of Eqns 1 and 4 for each conduit tier sequentially. As

shown in Eqn 11, the distal pressure determined for

each conduit tier became the proximal pressure of

the next tier. The core subroutine thus solved for the

array, ²P
i
´, needed to evaluate n tier-specific levels of

cavitation during transport. Q
guess

was rejected if any

tier failed to have a viable solution. If all tiers could

support Q
guess

, a larger value was tested until Q
max

was identified. A geometrically decreasing Q
guess

neighbourhood approach was taken to search for

Q
max

, permitting an estimation precision of 1 in 10*

after 30 iterations.

3. Optimization when f(P) is linear

(a) Isolating the effects of n on cavitation containment.

It was useful, for two distinct reasons, to develop an

expression defining the effects of n on cavitation

containment alone, without regard for the effects of

nR
pit

on R
!
. First, nR

pit
is already incorporated in

Eqn 2, and an additional expression for cavitation

containment alone will lead us to a quantitative

evaluation of the compromise between these two

opposing effects of n. This will permit a theoretical

analysis of optimal n in a later section. Second, but

equally important, most empirical studies of hy-

draulic architecture determine R
!

directly with

measurements that include both lumen and pit

resistances at once. In such circumstances, the effects

of nR
pit

are already accounted for, but to model the

flow behaviour it is then necessary to know how n

affects the cavitation dynamics alone.

This was achieved by running a first set of

simulations with R
pit

set to zero, and allowing only

the effects of variable partitioning and cavitation

containment. Because absolute transport rates are

strongly influenced by nR
pit

as well, it was most
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Fig. 5. Xylem pressure and conductivity profiles associated

with a multi-tiered cavitation response along a flow path

with n ¯ 10. All axes are the same as in Fig. 3, with the

left-hand y-axis showing the xylem pressure and the right-

hand y-axis the relative conductivity, f(P), remaining after

cavitation. (a) Uniform tier lengths throughout the

pathway (Q ¯ 0±13); (b) optimal conduit tier-length

distribution (OCLD) as defined by Eqn 14 (Q ¯ 0±09). In

both panels, flux dynamics were calculated in identical

fashions, solving for Q
max

by using Eqns 10, 11 and 12,

with ²l
i
´ and its effects on cavitation containment being the

only distinguishing features. Q
max

is slightly higher in (b),

as indicated by the lower value of Θ (0±13 and 0±09 for

uniform conduit tier-length distribution and OCLD,

respectively). Solid lines, P
i
; dotted line, f(P

i
) ; circles,

conduit endpoints.

appropriate to express these isolated effects on

cavitation containment in relative terms. We defined

a relative containment limitation (Θ) as the fractional

reduction in Q
max

at a given n relative to perfect

containment when n ¯ ¢ as:

Θ(n)¯1®
Q

max

Q$
max

Eqn 13

Θ(n) then describes the fractional decrease in Q
max

at

a defined n, related solely to the spread of cavitation

away from the sites of origin as a consequence of

conduit length. In evaluating Eqn 13, we solved for

Q
max

by using the numerical model recognizing n

conduit tiers, and calculating Q$
max

with the matric

flux potential equation (Eqn 8).

Θ(n) changes rapidly at low n. A single-tiered

pathway, as already discussed, has its Q
max

reduced

by a factor of 0±5 from a lack of cavitation

containment. For a linear f(P) and tiers of uniform

length (Fig. 4a, solid circles), the containment

limitation decreased to !0±1 by n ¯ 10 and to

!0±05 by n ¯ 50. The nature of this changing

limitation might be understood further by con-

sidering the water potential gradient and cavitation

profile (at Q
max

) in a pathway with n ¯ 10 and all

tiers of equal length (Fig. 5a). Comparing this

diagram with Fig. 3a, we see that each individual tier

in Fig. 5a had features that were highly reminiscent

of the single-tiered pathway. There was uniform

cavitation within each tier, and it was determined by

the lowest value of P within the tier. The shaded

triangular regions in Fig. 5 visually display the tier-

by-tier penalty that is paid in lowered conductivity

from the lack of cavitation containment within tiers.

However, in comparison with Fig. 3a we see that (1)

the total effect of uncontained cavitation was much

less at the higher n, and (2) at higher n the pathway

could sustain a greater total decrease in water

potential across it at Q
max

.

This latter point of higher total ∆P merits special

emphasis. Recall that in comparing the single-tiered

and matric-flux models, the percentage loss of

hydraulic conductance in the two conditions was the

same at Q
max

, and differences in Q
max

were at-

tributable entirely to differences in ∆P. The same

principle holds for multi-tiered pathways at in-

termediate n. Containment of cavitation by greater

partitioning reduces conductance loss substantially.

At submaximal Q, this effect would be quite evident

in comparisons of K. However, when all example

systems have been driven to their respective maxima

for Q, variation in K tends to disappear. These

maxima will all depend on the product of K and ∆P,

and, regardless of the rate in decline of K with total

∆P at different values of n, the maximum always

occurred at a predictable percentage decrease in K
!
.

On the basis of a linear f(P), this was exactly 50% for

the single-tiered and matric-flux pathways (Eqns 7

and 9). For a multi-tiered pathway with n ¯ 10, it

was close to 50% for tiers of uniform length, and

exactly 50% if the tier length was distributed

optimally with respect to cavitation containment as

discussed in the next section.

(b) Optimal conduit tier-length distributions (OCLDs).

We expect the containment of cavitation to be

sensitive, not just to the value of n but also to the

subtler aspects of the mean lengths of conduits in

different parts of the pathway. This is expected to

arise from the steeper ¥P}¥l in distal portions of the

pathway, and the rapidly increasing levels of cavi-

tation associated with it. Although we might expect

that the optimal frequency of end walls increases

distally in the shoot, it is not obvious a priori how

different from each other the basal and distal regions

should actually be. To explore this question numeri-

cally, we added a second, nested search algorithm

to the simulations of Q
max

. The new algorithm

optimized the partitioning of initial resistance into n

compartments by varying the set of end-wall posi-

tions ²l
i
´ (Fig. 1c). The total length and resistance of

the pathway as a whole were held constant, but the

integrals of R
lumen

(l) representing each individual

tier (Fig. 1c; Eqn 12) were allowed to exchange

lengths while searching for an optimal set of ²l
i
´.

Optimization was based on the ²l
i
´ value that yielded

the highest Q
max

.
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Fig. 6. The optimal conduit tier-length distribution

(OCLD) shown as relative tier length against tier position.

The OCLD is shown for different numbers of conduit

tiers ; n ¯ 4 (circles) and n ¯ 10 (diamonds). At OCLD the

system reaches its greatest possible Q
max

. (a) OCLD for

linear cavitation vulnerability function, f(P) ; (b) OCLD

for Weibull function, f(P).

In Fig. 6a the results are shown for two cases, with

n ¯ 4 and 10, respectively. Two features are

immediately obvious: the optimal length of the

conduit tiers decreased substantially between the

basal and distal ends of the pathway, and it did so in

a continuous fashion. A generalized expression

predicting the OCLD for any n was:

L
i

L
¯

(n­1)

Σn

"
i

®
i

Σn

"
i

Eqn 14

(L
i
¯ l

i
®l

(i−")
; it represents the total length of the ith

tier.) This expression is not particularly intuitive at

first glance, but it is simply a linear function of i, the

rank position of a given tier in the pathway as shown

in Fig. 6a, with both slope and intercept given as

functions of n to make it general. Thus, Eqn 14

predicted both the OCLD shown for n ¯ 4 and n ¯
10, and likewise for any n. A pathway with the

spacing of the end walls distributed according to Eqn

14 contained the effects of cavitation more effectively

near the sites of origin than any other possible length

distribution still with the same n (this is proved

analytically for the case of n ¯ 2 in the Appendix).

A comparison of Θ(n) between OCLDs and

uniform tier lengths is given in Fig. 4a (open circles

compared with closed circles, respectively). At very

high values of n, containment became quite effective

for both OCLD and uniform tier-length distri-

butions. At moderate values of n, however, the

superiority of the OCLD was substantial. At n ¯ 10,

for example, shifting from uniform tiers to OCLD

was as effective at reducing Θ as doubling n. In terms

of adaptive response, adopting an OCLD does not

carry any penalty in terms of increased nR
pit

, as

would increasing the value of n (see section IV.3.d).

A reversal of the pattern of OCLD, with mean

conduit length increasing from basal to distal

regions, would be particularly maladaptive (Fig. 4a,

circles with­superimposed).

Fortunately, for a pathway with linear f(P) and an

OCLD, the laborious computations of numerical

simulation for evaluating Θ(n) are unnecessary. The

exact magnitude of the cavitation containment

limitation could be predicted by a simple algorithm

for any value of n (see Appendix):

Θ(n)¯1®
n

n­1
Eqn 15

Further, at OCLD, the loss of whole-pathway

conductance at Q
max

was 50% for all n. Therefore,

the containment limitation was solely a function of

how ∆P changed with n rather than an effect of

pathway conductance.

(c) Abrupt changes in conduit length. Eqn 14

predicts that, in OCLD, changes in length, or at least

in the partitioning of resistance between tiers, should

be gradual and continuous from the basal to distal

regions. Under catastrophic conditions in which

Q
max

might be exceeded, the collapse of the transport

system would occur initially in a single critical tier.

For most length distributions, the terminal, distal

tier, where P was lowest and cavitation was greatest,

was also the tier in danger of immediate hydraulic

failure. Basal portions of the pathway were generally

under very little stress, whereas the limitation to

overall flow was set by the most distal tier, where

cavitation levels were high. However, such a bottle-

neck effect is not theoretically restricted to the final

tier under non-OCLD. A bottleneck can theor-

etically occur at intermediate tiers if the conduit

length undergoes an abrupt rather than a gradual

shortening, such that very long conduits have their

ends near the distal end of the entire flow path where

P is most negative. This kind of abrupt shortening

might occur, for example, in the twig or petiole of a

ring-porous tree or vine, and this could shift the

critical conduit tier in immediate danger of collapse

to the last very long tier of conduits in the pathway

(i.e. the twig or branch). In such length distributions,

the location within the pathway of incipient hy-

draulic failure at Q
max

depends both on the tier-

length distribution and interactions with hydraulic

segmentation represented by variation in R
lumen

(l),

as discussed in more detail in section V.3.a.

(d) Optimal frequency of end walls : incorporating

R
pit

. The optimal value of n, n
Qmax

, was defined as

that which permitted the highest possible value of Q,

Qn=opt

max
. Considering Fig. 4a alone, the optimal n

would be ¢, because this resulted in the minimum

containment limitation. However, in a complete

analysis of the effects of n, the gain of greater
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(open squares) ;

left-hand y-axis) achieving the greatest possible Qn

max

based on a compromise between pit membrane resistance

vs cavitation containment. High n favours increased

cavitation containment (Fig. 4) but causes higher initial

flow resistance (K
!
, Eqn 2). n

Qmax
(Eqn 17) is a function of

the ratio of whole-pathway lumen resistance to pit

resistance (x-axis). Also shown (closed circles) is the

contribution of total pathway pit-membrane resistance

(nR
pit

) to R
!

(right-hand y-axis).

cavitation containment as n increases would be offset

by higher nR
pit

in the determination of K
!

(Eqn 2).

This compromise should lead to an intermediate,

optimal value of n, depending on the relative values

of R
pit

and R
lumen

(l). Although R
lumen

(l) can be

readily estimated from the Hagen–Poiseuille

equation (Eqn 3), there is relatively little information

on R
pit

beyond the tracheid analysis of Nobel,

Gibson and colleagues in which nR
pit

can reach a

magnitude equal to ! R
lumen

(l)dl (Gibson et al.,

1984; Calkin et al., 1986; Schulte & Gibson, 1987;

Veres, 1990). In the optimization analysis that

follows, it was assumed that cavitation caused equal

reductions in lumen and interconduit pit com-

ponents of total pathway conductance.

Defining an analytical expression for the optimal

number of end walls subdividing the pathway into

multiple tiers begins with Eqns 7 and 9. First, we

substituted into Eqn 2 for K
!
. Second, we concluded

that the middle factor, describing K}K
!

after

cavitation at Q
max

, would be constant for all n as

already discussed and in the Appendix. Finally, we

drew upon Eqn 15 and our conclusion that the

cavitation containment limitation was fully described

by a factor of n}(n­1), which quantifies how

sustainable, total ∆P varies with n. This yields:

Qn

max
¯ 9 1

nR
pit

­!L
!
R

lumen
(l) dl: 90.5

(P
K=!

®P
!
)

P
K=!

:
¬9(P!

®P
K=!

)
n

n­1: Eqn 16

In this expression, Qn

max
refers a family of pathways

differing in n but always possessing an OCLD. The

added superscipted n is present to emphasize that we

are looking for a global maximum in Q with respect
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Fig. 8. The sensitivity of Q
max

to deviation of n from n
Qmax

.

Curves for different values of n
Qmax

(dot-dashed, n
Qmax

¯ 3;

dotted, n
Qmax

¯ 10; broken, n
Qmax

¯ 20; solid, n
Qmax

¯
50) are based on different values of R

pit
whilst holding

!R
lumen

(l )dl constant in all analyses. The y-axis is plotted

as a relative value to emphasize curve shape and the

contribution of n rather than the different values of R
pit

in

controlling Q
max

.

to optimization of the xylem anatomy, and not just a

specific maximum under an arbitrarily fixed ana-

tomical definition. To find the unique value of n

yielding the highest possible value for Qn

max
, we took

the partial derivative ¥Qn

max
}¥n, set it equal to zero

and solved for of n
Qmax

:

n
Qmax

¯A!ln
o
R

lumen
(l) dl

R
pit

Eqn 17

All effects of P
!

cancelled out of Eqn 17, indicating

that, for linear f(P) ¯ 1­mP, the solution was

generally valid regardless of what combination of

high flux and}or low soil water potential was causing

the pathway to reach its transport limit.

Eqn 17 yielded the simple result that the optimal

number of conduit tiers was related to the ratio of the

integrated lumen resistance of the entire pathway to

the resistance of crossing the pit membranes of a

single tier of conduits. As shown in Fig. 7 (left-hand

y-axis), the smaller the pit resistance there was

relative to the pathway lumen resistance, the higher

n
Qmax

was. Intuitively this is logical, given that when

we set R
pit

¯ 0 and remove any hydraulic cost of pit

resistance, n
Qmax

¯ ¢ (Fig. 4a). Conversely, the

more hydraulic resistance there is at the pits, the

lower n
Qmax

is. The right-hand y-axis in Fig. 7 shows

the implied contributions of nR
pit

to total K
!
, as

implied by the ratio !R
lumen

(l)dl}R
pit

(x-axis) com-

bined with the respective values of n
Qmax

(left-hand

y-axis). This was included for ease of comparison of

the optimality predictions with published values,

although in fact there are currently few data sets in

which this is confidently evaluated (see section

V.2.a). Fig. 8 shows how the n
Qmax

optimum became

progressively flatter as n
Qmax

increased. This was

because, at high values of n
Qmax

, both of the opposing

effects were changing only very slowly with n. The

asymptotic nature of the cavitation limitation at high

n is evident in Fig. 4, and high n
Qmax

in Figs 7 and 8
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was associated with very low R
pit

, such that large

changes in n were needed to change K
!
substantially.

4. Optimization when f(P) is curvilinear

All discussion so far has centred on an assumed

linear f(P) of the form shown in Fig. 2. This has

helped us to derive relatively simple expressions and

conclusions, but real plants often have much more

complex shapes to their cavitation vulnerability

curves. There is no theoretical reason to expect a

specific shape for f(P) other than that it must be a

monotonically decreasing function, and several

functional types have been used to fit data

empirically on curvilinear vulnerability (Sperry &

Tyree, 1990; Neufeld et al., 1992; Mencuccini &

Comstock, 1997; Sparks & Black, 1999). One useful

formulation is the Weibull function (Fig. 2, solid

line), first applied to vulnerability curves by Neufeld

et al. (1992). The use of a Weibull function to define

f(P) in our analysis gave results that were quali-

tatively very similar to the linear case in almost all

important respects, although concise analytic

expressions for general relationships, such as Eqns

14, 15 and 17, could not be derived with the same

precision.

The OCLD determined for the Weibull function

by our numerical search algorithm is shown in Fig.

6b. The OCLD was in some respects very similar to

that predicted for linear f(P), in that basal segments

were much longer than distal ones, and the transition

was graded, not abrupt. However, there were notable

differences as well. The rate of change was curvi-

linear, and the difference between basal and distal

tiers was even more extreme. More significantly, the

predicted OCLD was not independent of P
!

(not

shown), as it was with linear f(P). Obviously, a plant

cannot change the dimensions of pre-existing, no

longer living, xylem conduits in response to a change

in soil water potential, so we must ask how

quantitatively important these effects were.

The containment limitation Θ(n) showed quali-

tatively similar patterns to those already discussed,

but a pathway with Weibull function f(P) was even

more sensitive to tier-length distributions than the

same analyses when f(P) was linear (Fig. 4b). When

each curve type was at its own respective OCLD,

there was remarkable congruency of Θ(n) between

Weibull and linear cases (Fig. 4, open diamonds in

Fig. 4b compared with open circles in Fig. 4a,

respectively). This means that Eqn 15, although

precisely correct only for linear f(P), was still an

excellent approximation for the Weibull function

f(P). Moreover, changing the length distribution,

²l
i
´, of the Weibull function from its own numerically

determined optimum to that defined by Eqn 14 for

linear f(P) made an almost imperceptible change in

Θ(n) (Fig. 4b, open diamonds compared with ¬
symbols). Eqn 18 for n

Qmax
was also an almost perfect

approximation for the Weibull function when P
!
¯0,

but the disparity could be 15–20% if P
!

were low

enough to cause very high levels of cavitation (50%)

even in the absence of water transport. However, it

should be noted how flat the optima were for n
Qmax

in

Fig. 8, so even here the differences in predicted

Qn=opt

max
were very small.

V.      :

  

1. Limitations to the concept of conduit tiers

(a) Vessel ends are randomly distributed. Evaluating n

for real plants involves consideration of their much

more complex conduit length distributions.

Conduits are rarely organized into distinct tiers, and

multiple length classes coexist throughout the path-

way. The assumption of discrete tiers in the models

already discussed was a conceptual and compu-

tational aid. However, this simplification has little

effect on the general conclusions. Having conduit

ends randomly scattered along the axis rather than

organized into discrete tiers will smooth the apparent

step function for k (e.g. Fig. 5) but will not in any

way alleviate the inherently greater loss of total

conductance resulting from cavitation in longer

conduits. Cavitation would still be determined by

the most negative water potential at the distal end of

each conduit, and would still reduce conductivity in

the pathway throughout the conduit’s length.

(b) Dispersion around mean length within each tier.

The consequence of multiple length classes

coexisting in all regions of the pathway of real plants

is more difficult to evaluate. Having dispersion

around the mean conduit length does nothing to

alleviate the need for cavitation containment, but the

effective value of n, in the context developed here,

becomes a complex average of different length classes

weighted by their contribution to total K
!
. When

diameter classes in a xylem cross section are

measured, variation in expected flow capacity

typically ranges one or two orders of magnitude

between different vessels. The smallest half or more

of the size distribution typically makes only a minor

contribution to K
!
(Ellmore & Ewers, 1986; Ewers &

Fisher, 1989a; Sperry et al., 1994; Mencuccini

& Comstock, 1997). Length classes, generally

measured separately from conduit radii, can vary

from a few centimetres to several metres, with the

short vessels being typically much more numerous

(Zimmermann, 1983). It is then essential to know

whether the long vessels are also those with greater

diameter, so that they dominate K
!

despite being

fewer in number. In comparisons between early and

late wood, and between different species, there is a

consistent and strong positive correlation between

length and diameter (Zimmermann & Potter, 1982).
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Although reinforcing the same correlation, accurate

data on length and diameter size classes for vessels

mixed in the same complex tissue are extremely rare

(Buchmueller, 1986; Ewers & Fisher, 1989b). A

more accurate appraisal of n in most plants awaits the

development of techniques making this evaluation

tractable, but it is likely that Q
max

is strongly

dependent on the behaviour of the longest and

widest vessels, and is thereby potentially limited by

the poor cavitation containment in long vessels.

An interesting aspect of these length and diameter

distributions within individual stem segments is

found in several studies that have shown that, as

cavitation decreases K within a given axis, it is the

largest vessels in the population that tend to fail first

at moderate P (Lo Gullo & Salleo, 1993; Hargrave et

al., 1994; Sperry & Saliendra, 1994; Lo Gullo et al.,

1995; Linton et al., 1998). At very negative

pressures, the population of vessels remaining is

often strongly skewed towards the small end of the

original size distribution. This would suggest that

the initial Q
max

, when P
!
is high, might be primarily

dependent on a subpopulation of the largest vessels,

minimizing nR
pit

and maximizing conductivity via a

large diameter lumen. As P
!
decreases under stress,

there would be a natural shift to a ‘ safer’ system of

shorter, narrower vessels, no longer capable of high

flux rates but also no longer susceptible to abrupt

failure via cavitation spread from distal regions.

2. Is the xylem optimally partitioned?

(a) Optimal number of end walls. Analysis of n
Qmax

indicates that the large numbers of conduit tiers, as

seen in many plants, would maximize Q only for

values of R
pit

that result in very small estimates of

total pit resistance (Fig. 7). Unfortunately, relatively

little is known about the magnitude of total pit

resistance in plants. The most comprehensive study

was done on fern tracheid pathways, in which as

much as 50% of total hydraulic resistance could lie

in the interconduit pits (Calkin et al., 1986; Schulte

& Gibson, 1987). From Fig. 7, such a large fraction

of R
!
coming from R

pit
would be associated with an

n
Qmax

approaching 1, and these fern pathways, with

n ( 100, are clearly not in accordance with this

prediction of optimality. This is not entirely

surprising, because vessels are thought to have

evolved to overcome the developmental constraints

limiting optimality in xylem pathways made of

tracheids. An alternative solution to increased length

is to reduce the pit membrane resistance greatly,

which might have happened in the highly specialized

torus–margo structure of conifer pits. However, the

actual partitioning of resistance between lumen and

pit in conifers is not known and we cannot yet judge

how close they might lie to the predictions of n
Qmax

.

The evolution of vessels surely brought plants

closer to n
Qmax

, because the much longer conduits

allow a range of n from perhaps a few hundred in

diffuse porous trees to as low as 10 or 20 in some

herbs, vines and trees with very large vessels.

However, here, too, precise evaluation is limited, not

only by the need for better evaluation of n itself, as

discussed above, but also by the absence of definitive

data on pit resistance. In some plants with very long

vessels, the K
!

of the xylem approaches that

predicted by the Hagen–Poiseuille equation for the

lumen alone (Eqn 3) (Ewers et al., 1990), but more

commonly ranges from only 30% to 95% of this

value (Chiu & Ewers, 1992). This lower value of K
!

could indicate substantial additional resistance from

the interconduit pits (Zimmermann & Brown, 1971).

However, when the measured K is less than that

predicted from Hagen–Poiseuille, it is hard to tell

whether this is due to a large percentage of R
!

coming from nR
pit

(Eqn 2) or from the sensitivity of

the R
lumen

(l) estimate to accurate measurement of

hydraulic radius (Calkin et al., 1986; Tyree & Ewers,

1991). The estimation of nR
pit

by subtraction of Eqn

3 from measured R
!

also assumes that the typical

wide range of diameters measured from a single

xylem tissue cross section represents a population of

cylindical conduits that genuinely have different

diameters throughout their lengths. If they actually

represent conduits cut at different points along

similar tapered lengths (i.e. the variation is due to the

position of cut only), then the large and small

diameters are really in series, not in parallel, and the

expected conductivity of the tissue will be much

lower. Comparison of specific conductivities of

branch segments both shorter than and longer than

the average vessel length has sometimes supported

the idea that pit resistance makes a very small

contribution to the total (Chiu & Ewers, 1993), and

this would predict a large value for n
Qmax

in Eqn 17.

Despite this considerable ambiguity, it seems likely

that plants with rather small numbers of vessel tiers,

such as vines, ring-porous trees or short-statured

herbaceous plants, are closest to n
Qmax

, whereas

short-vesseled diffuse-porous trees are more likely to

exceed it.

In this context it is worth noting that, owing to the

broad n
Qmax

optima (for n
Qmax

"20; Fig. 8), n
Qmax

could be exceeded substantially without a substantial

diminution in Q
max

. Advantages of n "n
Qmax

might

lie in increased safety from mechanical injury,

morphological or developmental constraints, sus-

ceptibility to cavitation from freezing, and}or other

influences not considered here.

(b) Conduit length distribution along the pathway.

Some clear anatomical patterns in the published

papers are consistent with theoretical predictions of

substantial decreases in conduit length towards the

downstream end of the flow path. According to the

OCLDs of Fig. 6, the upstream portion of the flow

path (roots) should have substantially longer mean
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vessel lengths than downstream ones, and the

transition should be gradual rather than abrupt.

Again, published length data are scanty, but roots

have consistently larger-diameter vessels than shoots

(Grew, 1682; Baas, 1982, 1986; Ewers et al., 1997),

and, in the few cases tested, this was also associated

with much longer vessels in the root (Zimmermann

& Potter, 1982; Kolb & Sperry, 1999a). Where it has

been measured, vessel lengths in the shoot are

shorter on average than in the larger roots, and

conduit length in petioles and twigs can be much

shorter than in the main branches and trunks (Salleo

et al., 1985).

3. Hydraulic segmentation

(a) Segmentation in hydraulic resistance. Hydraulic

segmentation as described by many authors

(Zimmermann & Brown, 1971; Salleo & Lo Gullo,

1983; Zimmermann, 1983; Ewers & Zimmerman,

1984; Salleo, 1984; Sperry, 1986; Sellin, 1988; Lo

Gullo, 1989; Cochard et al., 1992; Meinzer et al.,

1992; Yang & Tyree, 1994; Joyce & Steiner, 1995;

Aloni et al., 1997) is distinct from, but fully

compatible with, the concepts developed in this

review. We predict that conduit length should divide

the total resistance, not length in itself, into an

optimal number of tiers to contain cavitation (see

section VII.2, Eqn A.6, and section VII.5). Seg-

mentation in resistance can be accounted for in

R
lumen

(l), and thereby included directly in analyses

of optimal partitioning.

An interesting special case arises in vines and ring-

porous trees, and perhaps in herbaceous species,

where relatively long stem vessels potentially ap-

proach the leaf bases, where there can be an abrupt

change to shorter vessels. As mentioned in section

III.3.c, we found that, when R
lumen

(l) was constant,

the extension of long conduits to near the end of the

flow path could result in hydraulic failure occurring

first in the stem rather than in the leaves at the distal

end of the flow path. This predicted point of failure

would contrast sharply with the prediction that

segmentation due to variable R
lumen

(l) (Tyree &

Ewers, 1991) or f(P) (Tyree et al., 1993) protects the

main axes. In the segmentation hypothesis, R
lumen

(l)

is not constant, and increased R
lumen

(l) is typically

associated with abruptly smaller-diameter and

shorter vessels in small twigs and petioles. It has

been interpreted to restrict hydraulic failure to

expendable organs by manipulating the site with the

steepest pressure gradient. The segmentation hy-

pothesis predicts designed failure in the petiole as an

adaptive design protecting the xylem pathway in

major branches. A sudden increase in R
lumen

(l) would

also shift the prediction of failure from branch to

petiole in our analyses here. The potential vul-

nerability of the last long conduits adjacent to an

abrupt transition in length actually highlights the

need for ‘segmentation’ in R
lumen

(l), to control the

sites of hydraulic failure in ring-porous species and

other species with vessels that are long relative to

their stature.

(b) Segmentation in cavitation vulnerability. Vul-

nerability to cavitation, f(P), can also vary, not just

between plants, but among organs within a plant

(Tyree et al., 1993; Sperry & Saliendra, 1994; Tsuda

& Tyree, 1997; Linton et al., 1998). Incorporating

this variation in our model could result in pressure

and conductivity profiles considerably more complex

than those shown in Fig. 3. Here we comment on

only one such model : that in which root systems

might be more vulnerable to cavitation than the

shoots. Several studies have reported such patterns,

and many have also found that within the root

system the smaller roots are the more vulnerable

(Mencuccini & Comstock, 1997; Sperry & Ikeda,

1997; Sperry et al., 1998b; Kolb & Sperry, 1999a;

Linton & Nobel, 1999; Hacke et al., 2000). Some

studies have also offered analyses of where the

limiting bottleneck defining Q
max

would occur: (1) in

the foliage, where P was lowest, or (2) in the root,

where cavitation was more sensitive to P. The results

can depend on the soil water potential (P
!
) : when P

!

is high, failure occurs in the shoot, but when P
!
drops

during soil drought, failure shifts to the root system

(Kolb & Sperry, 1999a). Where small and large roots

are distinguished, failure under drought is localized

to the more vulnerable small roots (Hacke et al.,

2000).

How should such pathways be partitioned

optimally to limit cavitation? The shortest conduits

should be found where the possibility of cavitation is

greatest, so as to contain the loss of conductivity

more effectively. In our analysis in which f(P) is

constant along the flow path, cavitation occurs at the

downstream end of the pathway, and hence this is

where the shortest conduits should be found (Figs 3

and 6). If high cavitation zones are also possible in

the smaller roots during drought (Hacke et al.,

2000), there should also be short conduits at this

upstream end of the flow path. The interior pathways

of large transporting roots and main stems seem

from most studies to have larger safety margins from

cavitation, and would be expected to have the longest

conduits. The precise pattern of predicted length

distribution would involve a complex interaction of

segmentation in R
lumen

(l) and f(P), and would need

to be modelled for each case. The actual length

distributions along the pathway would also need to

be measured for comparison with predicted results

because no conduit length data exist at this level of

resolution.

VI. 

1. Anatomy

Detailed comparisons of conduit length distribution
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along the xylem flow path are lacking, but the

general trend indicates that mean conduit length

decreases towards the downstream end. This is

consistent with maximizing flow capacity by limiting

the damage from cavitation at distal regions of the

shoot. Mean conduit length throughout the plant

body is almost certainly less than that predicted to

maximize flow capacity for tracheid-bearing species

owing to developmental constraints on conduit

length. Although the evolution of vessels has prob-

ably brought angiosperms closer to the optimal

conduit length distribution, a more precise evalu-

ation requires better knowledge of length distri-

butions and pit membrane resistances (e.g. Fig. 7).

Given that there might be a rather flat optimum

(Fig. 8), selection against shorter-than-optimal

vessels on the basis of cavitation containment vs flow

resistance might be offset by additional factors that

we have not modelled.

2. Modelling flow

Accurate modelling of Q in xylem requires some

knowledge of the conduit anatomy: (1) the frequency

of true end walls subdividing the pathway’s cavi-

tation response and (2) the variation in conduit

length in basal vs distal portions of the pathway. For

plants with only tracheids, such as conifers, or for

many diffuse porous angiosperm trees with relatively

narrow and short vessels, n is much greater than 100

and the actual limitation imposed on Q
max

by failure

to localize individual cavitation events will be at

most 2% or 3% (Zimmermann et al., 1982;

Zimmermann, 1983; Ewers & Fisher, 1989a;

Tognetti & Borghetti, 1994; Hacke & Sauter, 1995;

Ranasinghe & Milburn, 1995; Zotz et al., 1997).

Flow characteristics in such plants can be accurately

and much more simply modelled with the matric flux

approach (Eqn 8) (Sperry et al., 1998). However, for

many other angiosperms, such as some herbs, lianas,

ring-porous trees and tropical trees with large vessel

diameters, limitations of 5–15% or more are likely,

and might need to be taken into account

(Zimmermann & Jeje, 1981; Zimmermann, 1983;

Legge, 1985; Neufeld et al., 1992; Fisher & Ewers,

1995). If n is known, Q
max

can be effectively modelled

in such plants as the product of Eqn 8 and the factor

n}(n­1) from Eqn 15. Precise modelling of Q under

submaximal conditions might require explicit con-

sideration of conduit length in the cavitation process.

VII.  :  

 

1. Analytic solution for Q
max

with a single tier

Several general-case formulas, presented in section

IV, were first developed from inductive reasoning

after analysis of extensive output from a numerical

simulation model. These include Eqn 14 for OCLD,

the optimal ²l
i
´ under linear f(P), Eqn 15 describing

the cavitation containment limitation, and Eqn 17

defining the optimal number of conduit tiers in the

flow path. Although full formal proof of the general

case is not tractable for these equations, considerable

validation is possible. The first level of proof is that

the general expressions always hold when tested

under numerical simulation, even for previously

unexamined values of n, and that no combination of

parameters (i.e. tier-length partitioning and final

water-potential gradient through the axis) was found

that proved superior (i.e. capable of generating a

higher Q
max

) to the predicted values. Here we present

another level of more formal proof that is completely

independent of the numerical approximation tech-

niques of our modelling. We consider the analytical

solutions to the simplest cases, first n ¯ 1 and then

n ¯ 2, and show that these formal proofs lead

precisely to the same special-case expressions pre-

dicted by our general equations for all n, and that

analysis of the derivatives demonstrates that they are

true maxima in these cases. The general expressions

developed here are also consistent with matric flux

calculations at n ¯ ¢.

All discussions below are developed for a linear

f(P) cavitation function. All nomenclature follows

that in Fig. 1c, but the pathway terminates at P
"
or P

#

for the single-tiered and two-tiered cases, respect-

ively. The single-tiered case is quite simple, and was

first presented as an analytical solution in Jones &

Sutherland (1991).

We first solve Eqns 1 and 4 simultaneously,

giving:

Q¯
1

R
!."

(1­mP
"
) (P

!
®P

"
) Eqn A1

We take the derivative of Q with respect to P
"
:

dQ

dP
¯

1

R
!."

(1­mP
!
®2mP

"
) Eqn A2

We set this equal to 0, yielding Eqn 6 from Section

III.2.a:

P
"
¯®

1®mP
!

2m
Eqn 6

The second derivative of Eqn A1 is negative at this

value of P
"
, indicating that this total water potential

gradient through the plant, P
!
®P

"
as defined by Eqn

6, yields the maximum possible Q.

It is also worth considering what level of con-

ductance loss from cavitation is implied by Eqn 6.

We substitute the expression for P
"
from Eqn 6 into

the f(P) function to get :

K

K
!

¯1®m01®mP
!

2m 1¯0.5(1­mP
!
) Eqn A3
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If P
!

is zero, and consequently all cavitation in the

plant is caused solely by the gradient driving water

movement, the maximum flux is achieved by

developing a total ∆P that results in exactly 50% loss

of the saturated conductance. We can further

rearrange this expression as:

K

K
!

¯0.50m−"­P
!

m−"
1 Eqn A4

Since ®1}m is the value of P at which cavitation

reaches 100% (i.e. P!K=!
), Eqn A4 makes clear that

this 50% loss rule extends in modified form to all soil

water potentials. The magnitude of ∆P that is

possible declines with soil water potential ; at nega-

tive values of P
!

considerable cavitation might

already have occurred without achieving any water

movement. However, Q is always maximized under

prevailing environmental constraints when exactly

half of the remaining conductance available at Q ¯ 0

is further lost to cavitation owing to pressure

gradients associated with the plant’s own water

transport process.

2. The general case for n tiers

We now assert from inductive analysis of model

output at many values of n that, for pathways with an

OCLD, (1 ) Eqn A4 is true for all pathways regardless

of n, and (2) Eqn 6 is a special case of a general equation

also true for all n:

P
n
¯®

n®mP
!

(n­1)m
Eqn A5a

It turns out that it is a special feature of pathways

with linear f(P) and OCLD that, at Q
max

, all ∆P
i
are

equal (Fig. 5b). Consequently, an even more general

form of this expression that defines the set of ²P
i
´ at

limiting Q for this special case is :

P
i
¯®

i®mP
!

(n­1)m
Eqn A5b

These assertions are only strictly true if the pathway

has an OCLD, and consequently we must solve for

²P
i
´ and ²l

i
´ simultaneously. Again, from inductive

analysis of simulation output, we found that tier

length should decrease in a strictly linear fashion

moving from basal to distal portions of the pathway.

As discussed in section IV.3.b (Fig. 6 and Eqn 14),

this solution was for a rather restrictive case, one in

which interconduit pits had no resistance and

R
lumen

(l), the total lumen resistivity of a pathway

cross section, was constant throughout the pathway

length. The same inductive reasoning while allowing

R
lumen

(l) to vary as required for hydraulic segmentation

and including realistic values of R
pit

leads to a more

general expression predicting OCLD for all n:

R
!.i

R
!

¯
2

n01®
i

n­11 Eqn A6

This expression says that it is not length in itself that

is being optimally partitioned, but rather the total

resistance of the pathway regardless of its source. We

return to the implications of this below after

validating Eqn A6 in the analytic proof for n ¯ 2.

3. Analytic solution for Q
max

with two tiers

We can further support our general expressions with

an analytic solution derived for n ¯ 2. Although this

is admittedly a small value for n, it includes all of the

essential features found in all cases of n "1,

including (1) the need to find an optimal partitioning

of R
!

in Eqn A6, and (2) cavitation dynamics

proceeding to different states in different parts of the

pathway. The approach is very similar to that

developed above for n ¯ 1, except that we are trying

to solve simultaneously for both OCLD and ∆P to

maximize Q. The actual algebra turns out to be

rather formidable, even for n ¯ 2, so we resorted to

using the program Mathematica to calculate the

derivatives. Here we only set up the initial equations

and then report the analytic solutions found.

First, we define a partitioning variable (a)

describing what fraction of the total pathway re-

sistance should be included in the first tier, with

fraction (1®a) remaining for the second, final tier of

conduits. We then write that :

Q¯
1

R
(P

!
®P

#
)¯

1

R
"
­R

#

(P
!
®P

#
)

¯
1

R
!
²[a}f(P

"
)]­(1®a)}f(P

#
)´

(P
!
®P

#
) Eqn A7

This expression is analogous to Eqn A1 for the

single-tiered case, except that it includes our par-

titioning variable and separate cavitation responses

in each tier. However, we wish to take two partial

derivatives, ¥Q}¥a and ¥Q}¥P
#
, and Eqn A7 is still

complicated by being a function of two plant water

potentials, P
"
and P

#
, not just P

#
. We can address this

by recognizing that, although they have different

values, P
"

and P
#

cannot vary independently. The

value of P
"
can be constrained by recognizing that Q

is a constant throughout the whole pathway. We can

write an equally true expression for Q considering

flow across the second tier alone as:

Q¯
1

(1®a)}f(P
#
)
(P

"
®P

#
) Eqn A8

We then solve Eqn A8 for P
"

in terms of P
#
,

substitute into Eqn A7 to eliminate P
"
, and reduce

the rather complex resulting expression to a quad-

ratic equation for Q in terms of a, P
#
, and P

!
. The

appropriate solution is based on:

Q¯
®B­oB#®4AC

2A
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(A, B and C are the coefficients of Q#, Q and constant

from the quadratic in Q and have values of:

­m[R
!
(1®a)]#,

R
!
[1®mP

#
(3®2mP

#
­a­amP

#
)

®P
!
m(1­mP

#
®a®amP

#
)]

and

®(1­mP
#
)$(P

!
®P

#
)

respectively.)

We used the program Mathematica to evaluate the

first and second partial derivatives of Q with respect

to both a and P
#

(Abramowitz & Stegun, 1972).

The result of this analysis was that the optimal

values producing Q
max

are a ¯ 2}3 and P
#

¯
®(2®mP

!
)}3m, where m is the slope of the

cavitation function f(P). These are the same values

predicted by the general expressions Eqns A5 and A6

for n ¯2, which verifies both our inductive logic and

that the numerical solutions are effectively identifying

true optima for the multi-tiered pathways.

4. Matric flux and n ¯ ¢

When n ¯ ¢ we can use the matric flux integration

as shown in Eqn 8. The definite integral in terms of

P
!

and P!K=!
expands to:

Q$
max

¯K
!
[P

!
(1­mP

!
)®P!K=!

(1­0.5mP!K=!
)

Eqn A9

This reduces to:

Q$
max

¯K
!
[1­0.5mP!K=!

­P
!
)] (P

!
®P!K=!

)

Eqn A10

We note that for linear f(P), P!K=!
¯®1}m. We can

substitute this in replacing P!K=!
in the middle factor

only, and giving us Eqn 9 in the main text. Note that

the third factor is ∆P, and Eqn A10 predicts that the

gradient should reach the point of causing 100%

cavitation at the distal endpoint of the gradient. This

is consistent with Eqn A5 in the limit where n goes

to infinity.

5. R
pit

, variable pathway resistance and OCLD

A fully explicit statement equivalent to Eqn A6 is:

!li
l(i−")

R
lumen

(l) dl­R
pit

R
!

¯
2

n91®
i

(n­1): Eqn A11a

(R
lumen

(l) can be any continuous function describing

variation in lumen resistivity per unit length in

different parts of the flow pathway; R
pit

is expected

to be quite small relative to the integral term, and

consequently has only a minor influence on the tier-

length distribution.) In general, it will have a greater

relative importance in short tiers where the integral

term is smaller, and therefore including R
pit

in the

analysis causes the length difference predicted be-

tween basal and distal tiers to be greater. However,

the total effect is rather small. In the restrictive case

where R
lumen

(l) is a constant:

L
i
¯

2

n

R
!
[1®i}(n­1)]®R

pit

R
lumen

(l)
Eqn A11b

6. Proof of Eqn 15 describing limited cavitation

containment

We define this limitation, Θ(n), to be 1 ® Q
max

(n)}
Q

max
(!n ¯ ¢), where Q

max
(!n ¯ ¢) is calculated

as Q$
max

as defined by Eqn 8. This limitation arises

from a failure to restrict cavitation to its points of

origin in the pathway, and declines as the par-

titioning of the pathway increases with increasing n.

We begin our proof by showing that Eqn A3,

developed for the single-tiered pathway, also holds

in identical form for the two-tiered pathway, and

infer that the expected level of overall conductance

loss from cavitation in the pathway at Q
max

is

independent of n as long as the pathway has an

OCLD.

We begin by restating that, for n ¯ 2:

K

K
!

¯
R

!

R
¯

R
!

R
!
[a}f(P

"
)­(1®a)}f(P

#
)]

Eqn A12

Again, we wish to proceed by first eliminating P
"
.

This time we can use a simpler strategy than using

Eqn 8, because we are deriving an expression that is

true only in the limit of Q
max

, and not generally for

any value of Q. The short-cut is to recognize that, at

Q
max

, the distal tier will behave exactly as a single-

tiered pathway would, with P
"
as its input pressure.

This allows us to use Eqn 6 to formulate the

substitution P
"

¯ (2mP
#
­1)}m. Using this ex-

pression allows us to reduce A12 to:

K

K
!

¯
2(1­mP

#
)

2®a
Eqn A13

We now make a second set of substitutions using the

optimal values from the analytic solution at n ¯ 2 of

a ¯ 2}3, and P
#

¯®(2®mP
!
)}3m ; algebraically

reduce; and conclude that, at Q
max

:

K

K
!

¯0.5(1­mP
!
)

This is identical to Eqn A3 (for n ¯ 1) and to the

middle factor of A10 (for n ¯ ¢). This tells us that

the expected level of cavitation at Q
max

is a constant

with respect to n, a result consistent with our

numeric model results for all n. By Ohm’s law, all

variation in Q
max

with n must therefore be related to

variation in P
n

and ∆P. Recognizing that, for our

linear f(P), P at the 100% conductance loss point

(P
k=!

) has the value ®1}m, we therefore write:

Θ(n)¯1®
Q

max
(n)

Q
max

(¢)
¯1®

P
!
®P

n

P
o
­1}m

Eqn A14
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Substituting from Eqn A5 for P
n
, we finally derive

Eqn 15 from the text:

Θ(n)¯1®
P
!
­(n®mP

!
)}(n­1)m

P
!
­1}m

¯1®
n

n­1
¯

1

n­1
Eqn A15
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As the reality of human-mediated global change becomes increasingly accepted by a sceptical public,

so the scientific research that has identified this situation has become increasingly high profile.

However, while we can almost see the leaves before us changing, the same is not true of plant roots –

we ignore this hidden half at our peril. This Special Issue addresses root dynamics in the face of a

globally changing environment and asks the key questions: Do atmospheric and climatic changes

alter root production and root longevity? How do the changes impact on the whole plant and its

microbial symbiotic partners? And, ultimately, how do these changes alter the ecosystem itself? The

ecosystem perspective is especially important – root turnover is a key component of ecosystem

metabolism and the capacity of ecosystems to store carbon. It is clear that the prime challenges still

concern how to reach and analyze the roots themselves, but where there are gaps in our knowledge,

many researchers are finding that the visible half – the leaves – often do provide a good analogy for

roots. The reviews and original research reported here provide a comprehensive overview of the

subject, and point the way ahead for systematic scientific exploration of this compelling topic of our

times.
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