Tansley review

Plant responses to rising vapor pressure deficit

Charlotte Grossiord1,2, Thomas N. Buckley3, Lucas A. Cernusak4, Kimberly A. Novick5, Benjamin Poulter6, Rolf T.W. Siegwolf1, John S. Sperry7, Nate G. McDowell8

1Swiss Federal Institute for Forest, Snow and Landscape Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
2École Polytechnique Fédérale de Lausanne EPFL, School of Architecture, Civil and Environmental Engineering ENAC, 1015 Lausanne, Switzerland
3Department of Plant Sciences, University of California, Davis, Davis, CA 95616, USA
4College of Science and Engineering, James Cook University, Cairns, Queensland, Australia
5School of Public and Environmental Affairs, Indiana University Bloomington, Bloomington, IN, USA
6NASA Goddard Space Flight Center, Biospheric Sciences Lab, Greenbelt, MD 20771, USA
7Department of Biology, University of Utah, Salt Lake City, UT, 84112, USA
8Earth Systems Science Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA

*Charlotte Grossiord, phone: (+41) 44 739 2069, e-mail: charlotte.grossiord@wsl.ch

This article has been accepted for publication and undergone full peer review but has not been through the copyediting, typesetting, pagination and proofreading process, which may lead to differences between this version and the Version of Record. Please cite this article as doi: 10.1111/nph.16485

This article is protected by copyright. All rights reserved
Accepted Article
Summary

Recent decades have been characterized by increasing temperatures worldwide, resulting in an exponential climb in vapor pressure deficit (VPD). VPD has been identified as an increasingly important driver of plant functioning in terrestrial biomes including being a major contributor in recent drought-induced plant mortality, independently from other drivers associated with climate change. Despite this, few studies have isolated the physiological response of plant functioning to high VPD, thus limiting our understanding and ability to predict future impacts on terrestrial ecosystems. An abundance of evidence suggests that stomatal conductance declines under high VPD and transpiration increases in most species up until a given VPD threshold, leading to a cascade of subsequent impacts including reduced photosynthesis and growth, and higher risks of carbon starvation and hydraulic failure. Incorporation of photosynthetic and hydraulic traits in ‘next-generation’ land-surface models has the greatest potential for improved prediction of VPD responses at the plant- and global-scale, and will yield more mechanistic simulations of plant responses to a changing climate. By providing a fully integrated framework and evaluation of the impacts of high VPD on plant function, improvements in forecasting and long-term projections of climate impacts can be made.

Keywords: mortality, productivity, stomatal conductance, transpiration, warming
I. Introduction

The amount of water vapor that the air can hold, i.e. the saturation vapor pressure, is a curvilinear function of air temperature (Lawrence, 2005). Thus, global land surface temperature rise is increasing the saturation vapor pressure of the atmosphere. However, the actual vapor pressure has not been increasing at the same rate, such that the difference between the saturation and actual vapor pressure, hereafter the vapor pressure deficit (or VPD), is rising (Hatfield & Prueger, 2015; Fig. 1; see Box 1 for summary of abbreviations used in the article). An increase in VPD, and more specifically in leaf-to-air vapor pressure deficit (VPD$_L$), affects plant physiology independently of other drivers associated with climate change, e.g. elevated carbon dioxide concentrations [CO$_2$]. High VPD typically causes plants to close their stomata to minimize water loss and avoid critical water tension within the xylem (Running 1976), which occurs at the cost of reduced photosynthesis. Simultaneously, transpiration rate increases with high VPD up to a point after which it either remains high or starts decreasing (e.g., Franks et al., 1997), resulting in a further exacerbation of plant water stress. Along with its direct impact on plant physiology, high VPD results in increased rates of water loss from moist soils, in turn causing drying and heating of the terrestrial surfaces and contributing to more frequent and severe drought events and plant water stress (Dai, 2012). As such, VPD is a major determinant of global water resources and plant water relations, and could become increasingly important for vegetation dynamics over upcoming decades due to its chronic, global, temperature-driven rise.

While much of our attention has been directed towards plant responses to high temperature (e.g. Hughes 2000; Lindner et al., 2010; Way & Oren 2010), reduced precipitation (e.g. Bréda et al., 2006; Allen et al., 2010; Knapp et al., 2017) and rising atmospheric carbon dioxide concentration (e.g. Ceulemans & Mousseau 1994; Ainsworth & Long 2005), the independent physiological effects of high VPD on vegetation dynamics remain less explored. Part of the uncertainty associated with VPD impacts on plants relates to the difficulty to disentangle VPD effects from temperature, radiation and other climate drivers of plant function (but see Novick et al., 2016). For instance, on a diurnal or seasonal basis, high VPD conditions tend to co-occur with high radiation, making it difficult to untangle their relative effects. Similarly, high VPD conditions also usually occur in nature concurrently with stresses such as heat waves and droughts (i.e. periods of anomalously low precipitation) that are often thought to have the dominant impact on plant physiology. However, the relative role of VPD vs. other climatic drivers, particularly other
stressors associated with recent climate change, may be much higher than previously thought. For instance, extended periods of high VPD have been acknowledged as a primary driver of large-scale tree mortality in forest ecosystems (e.g. Breshears et al., 2013; Williams et al., 2013), as being positively correlated with wildfires (Seager et al., 2015; Williams et al., 2014), and as being responsible for reductions in crop production (e.g. Challinor & Wheeler 2008; Lobell et al., 2011; 2013; Asseng et al., 2015; Zhao et al., 2017).

The objectives in this review are to shed light on plant responses to high VPD. In the different sections we (1) provide a review of fundamental knowledge on what VPD represents from a plant’s perspective and how VPD is expected to shift under future climate conditions, (2) describe the mechanisms by which stomata detect and respond to variation in VPD, (3) highlight the variability in plant stomatal sensitivity to VPD across species and biomes and its potential drivers, (4) describe the recent trends in plant performance (i.e. photosynthesis, transpiration, growth and mortality) resulting from high VPD, and (5) discuss how plant responses to VPD have been and may be incorporated in the next generation of small- and large-scale dynamic vegetation models. This review addresses VPD impacts in all climatic regions. Most empirical studies investigating VPD impacts include other co-varying factors, thus impacts of VPD on vegetation cannot always be discussed independently of other parameters such as radiation, temperature and rising atmospheric CO\textsubscript{2} concentrations. Although in this review we also included studies where co-variation with other factors is present, we highlight and discuss which evidence includes other factors that could influence plant responses.

II. Rising VPD under global warming

Over the past 30 years, global surface temperature has risen by approx. 0.2°C per decade (IPCC, 2019). Warming increases the amount of water vapor the air can hold at saturation, i.e. the saturation water vapor pressure (e\textsubscript{s}) (Bohren et al., 2000). The actual vapor pressure of the air (e\textsubscript{a}) is constrained at the upper end by e\textsubscript{s} so that as air temperature increase, so does the maximum amount of water vapor (equilibrium between evaporation and saturation). e\textsubscript{a} is also dependent on the amount of moisture in the air. VPD, which is a direct measure of the atmospheric desiccation strength, represents the difference between e\textsubscript{s} and e\textsubscript{a} (VPD = e\textsubscript{s}−e\textsubscript{a} = e\textsubscript{s} - (RH × e\textsubscript{s} /100) where RH is the relative humidity in the air in percent; Monteith & Unsworth 1990). Because e\textsubscript{s} is driven
only by temperature, it increases during periods of high air temperature (i.e. heat waves), and results in higher VPD following a nonlinear relationship (De Boeck et al., 2010; Fig. 2). Long-term changes in VPD are still uncertain as they will depend both on e, and on the extent of water movement limitation from the land surface to the atmosphere under future climate. While numerous studies have reported globally a constant RH under future scenarios (e.g. Dai, 2006; McCarty et al., 2009), others have suggested a negative (e.g. Byrne & O’Gorman, 2018) or positive (e.g. Shenbin et al., 2006) trend at regional scales. Nevertheless, some studies have highlighted a sharp increase in global VPD in recent decades (Zhang et al., 2015; Yuan et al., 2019; Fig. 1), and others have predicted a continuous rise in VPD over the next century using general circulation models (Williams et al., 2013; Ficklin & Novick 2017).

Plant scientists interested in the physiological impacts of VPD variation (i.e., at the leaf- or plant-level) often use VPD_L to estimate VPD from a plant perspective because the leaf temperature can deviate from the ambient air (higher or lower via transpirative cooling). The temperature of plant canopies is a function of energy exchange processes dependent on the amount of energy that enters via solar radiation and ambient heat, and energy that exists the canopy via heat loss, reflected light and transpired water (Monteith & Unsworth, 1990). Boundary layers surrounding each leaf or the entire canopy allow transpired water to humidify the air surrounding the leaves, uncoupling VPD at the leaf surface from that in the bulk air (Jarvis & McNaughton, 1986). As canopy-atmosphere coupling decreases and boundary layer increases, the role of radiation on leaf temperature becomes more important, while the role of T is progressively reduced. Consequently, VPD_L is the more accurate value for the evaluation of the leaf water balance (and possibly for the whole plant- and even canopy-level). VPD_L is calculated as the difference in the water vapor pressure in the leaf (usually assuming saturation vapor pressure within the stomatal pore, i.e. 100% RH, but see later sections on this assumption) minus the water vapor pressure of the ambient air (e.g., Dai et al., 1992; Day 2000; Marchin et al., 2016).

III. Mechanisms of stomatal responses to VPD

A rapid increase in VPD_L typically induces a decrease in steady-state stomatal aperture and stomatal conductance, gs (Fig 3a). In seed plants (though not in seedless plants), this response is preceded by a transient change in gs in the opposite direction; i.e., stomata "pop open" before closing following exposure to increased VPD_L (Fig 3b), within two to 25 minutes (Buckley et al.,
The transient response arises from a decrease in the "backpressure" imposed on stomata by epidermal cells, and the steady state response arises from an even larger drop in guard cell turgor, driven by actively-mediated efflux of osmotic solutes (Buckley 2005). Overall, no consensus exists about the exact sensing mechanisms and processes driving the stomatal closure response to increased VPD_L. In angiosperms this response is thought to involve active sensing of water status in cells somewhere within the leaf, possibly in the mesophyll, the vasculature, and/or in stomatal guard cells themselves, likely mediated by hormonal signals like abscisic acid (Saliendra et al., 1995; Comstock & Mencuccini 1998; Buckley 2005; McAdam & Brodribb 2016). Leaf water potential (Ψ_L) and hydraulic conductance (K_{leaf}) determine how epidermal water potential and guard cell turgor respond to changes in VPD_L (Sharpe et al., 1987), and thus are likely major controls of stomatal response to VPD_L (Franks & Farquhar 1999). Midday depression in g_s is common in many plant species (e.g. Schulze et al., 1974; Grassi et al., 2009), and has been associated with variation in midday stem water status (Zhang et al., 2013), supporting that stomatal response to VPD_L is strongly related to the leaf- but also the whole-plant hydraulic characteristics (Brodribb & Jordan 2008).

Stomatal regulation is directly responsible for controlling leaf-level transpiration (T) response to VPD_L so that when VPD_L is low and stomata are fully open, T increases linearly with VPD_L. However, the effects of VPD_L on water loss vary widely among species. By re-evaluating a large set of g_s and T responses to VPD_L, Monteith (1995) concluded that in most studies, stomatal closure was induced by guard cells sensing the increased rate of T through the stomatal pore. This “feed-back” response results in T increasing nearly in proportion to VPD_L (regime A in Monteith, 1995). However, other studies reported declining rates of T under high VPD_L (e.g. Schulze et al., 1972; Franks et al., 1997; Cunningham, 2004; Whitley et al., 2013). This phenomenon is known as the “feed-forward” response (Farquhar 1978). While various mechanisms have been proposed to explain this response, more experiments are still needed to improve our understanding of this topic.

Similarly, stomatal responses to diurnal variation in VPD_L can also strongly influence photosynthetic CO$_2$ assimilation (A) to a varying degree across species. For instance, A declined by 9.4%, 13.6%, 21.0%, 29.4% and 36.6% in Z. mays, S. townsendii, C. austral, N. tabacum, and R. communis (Long & Woolhouse, 1978; Dai et al., 1992; Cunningham, 2005) (see Supporting Information Fig. S1). While, to our knowledge, no study investigated impacts of high VPD_L on photosynthetic capacity (i.e. maximum carboxylation velocity $V_{c,max}$, and maximum rate of
electron transport J_{max}) independently from drought or temperature impacts, some findings suggest that extended stomatal closure induced by high VPD_L could alter V_{cmax} and J_{max}. For instance, Flexas et al., (2006) found that stomatal closure triggers the down regulation of Rubisco activity (potentially because of decreased activation state of the enzyme) in response to a certain threshold of g_s in C3 plants, resulting in lower V_{cmax} and J_{max}. However, the relative impact of VPD_L on V_{cmax} and J_{max}, and the physiological meaning of these hypothetical changes remains unknown, and should deserve more attention in future studies.

A critical assumption in calculations of gas exchange parameters such as g_s is that intercellular air spaces inside leaves remain saturated with water vapor, particularly when VPD_L increases to values above ca. 2 kPa (Cernusak et al., 2018). To calculate g_s and intercellular CO$_2$ concentration (c_i), it is typically assumed that intercellular water vapor (e_i) is at saturation, so that the vapor pressure can be inferred from measurements of leaf temperature (Gaastra, 1959). Over the last 50 or so years, several attempts have been made to verify this assumption, with some results supporting it (Farquhar & Raschke, 1978; Jones & Higgs, 1980), and others suggesting that unsaturation takes place at moderate to high VPD_L (Jarvis & Slatyer, 1970; Ward & Bunce, 1986; Canny & Huang, 2006; Cernusak et al., 2018). This diversity of potential unsaturation across species may reflect the dynamic nature of g_s. In species with a relatively sensitive stomatal response to VPD_L, adjustment of g_s will likely regulate T such that no appreciable unsaturation occurs (Buckley et al., 2017; Cernusak et al., 2019). In other species, a slower or less sensitive stomatal response may allow for unsaturation transiently or at intermediate VPD_L before stomata have closed and slowed T sufficiently (Holloway-Phillips et al., 2019). Still other species may show appreciable unsaturation during steady state gas exchange at high VPD_L, as was recently observed in two semi-arid conifer species, which showed unsaturation as low as $0.8 \times e_s$, (Cernusak et al., 2018). Such low values of intercellular relative humidity are challenging for our current understanding of intra-leaf water relations (Buckley & Sack, 2019), but also present an opportunity for new explorations of internal hydraulic design.

In this review, we focus on physiological responses to VPD_L at a range of scales, with the response of g_s being critical among these. One typically infers a response of g_s by measuring T and assuming saturation of e_i, so that g_s can be calculated. If e_i becomes less than saturated as VPD_L increases, then g_s will have been underestimated in those instances. However, the response of T itself will still have been measured without bias, and the response of T to VPD_L could still be
faithfully reconstructed from the inferred g_s. The difference if e_i became unsaturated would be that the increasing resistance to T with increasing VPD_L would have actually been shared between the stomata and the mesophyll. This situation is analogous to inferring a parameter such as V_{cmax} from the response of photosynthesis to variation in c_i, but assuming that c_i is equal to c_c, the chloroplastic CO$_2$ concentration. This is common practice (Wullschleger, 1993; Walker et al., 2014), even though it is well known that c_c is less than c_i due to mesophyll resistance to CO$_2$ diffusion. In the case of mesophyll resistance to transpiration, we know much less about when and to what extent it occurs. Therefore, we recommend that practitioners continue to interpret T responses to VPD_L as resulting entirely from the action of g_s, while the challenging work of better understanding the nature of unsaturation of e_i continues in parallel.

In terms of modeling the response of g_s to VPD_L, it is important to realize that most empirical datasets used to fit parameters for different vegetation types (e.g., Lin et al., 2015) will have been collected under the assumption that e_i was saturated. In such a case, the impact of unsaturation, if it occurred, on T will already have been incorporated into the fitted parameters that define the stomatal response function to VPD_L. As described above, if unsaturation occurred it would have made the g_s response appear to be more sensitive to increasing VPD_L than it actually was; that is, stomata would have appeared to close more in response to increasing VPD_L than would be estimated from the physical change in aperture. Where the aim of modeling is to estimate the transpiration flux from the land surface, and if fitted parameters for modeling g_s (Franks et al., 2018) were defined with empirical g_s measurements that assumed e_i saturated, one should not further correct for unsaturation of e_i in modeling T. This would effectively be doubly accounting for unsaturation of e_i.

IV. Variability in sensitivity to VPD across species and ecosystems

1. Variability in g_s sensitivity across species

Stomatal sensitivity to VPD_L, often described in terms of the slope between g_s and $\ln(VPD_L)$ (Oren et al., 1999; Fig. 3a), reflects the magnitude of stomatal closure with increasing VPD_L, and therefore represents the primary strategy by which plants regulate gas exchange in response to rising VPD_L. Decades of research on stomatal behavior have highlighted that stomatal sensitivity to VPD_L is highly variable across- and within-species (e.g., Körner et al., 1979;
Whitehead et al., 1981; McNaughton & Jarvis 1991; Cunningham, 2004; 2005; Creese et al., 2014; Gao et al., 2015). Even within a plant, stomatal sensitivity to VPD_L can differ between leaves that have different functions, morphology, and anatomical traits such as stomatal pore depth and density (Warrit et al., 1980; Appleby & Davies 1983; Streck 2002). Using empirical data, Oren et al., (1999) found a consistent relationship between g_s at low VPD_L ($g_{s,ref}$ corresponding to g_s at 1 kPa VPD_L) and sensitivity to VPD_L, whereby plants with higher $g_{s,ref}$ tend to be more sensitive to increasing VPD_L (i.e., more rapid stomatal closure). Oren et al., (1999) generalize this result by observing that, when the dependence of conductance on VPD is expressed as $g_s = g_{s,ref}[1-m\ln(VPD/VPD_{ref})]$, the parameter m is approx. $0.6 \times g_{s,ref}$ for a large range of mesic species, suggesting that stomatal regulation occurs systematically near a constant Ψ_L value. However, a reduced sensitivity was found for desert species ($m = 0.4 \times g_{s,ref}$), highlighting a less strict regulation of Ψ_L as VPD_L increases in more drought-tolerant species (Oren et al., 1999), and suggesting different sensitivities to VPD_L between plant functional groups.

These findings are consistent with the observation that leaf and stem hydraulic capacity is strongly related to stomatal sensitivity to VPD_L (Brodribb & Jordan 2008; Zhang et al., 2013), and attest for the fundamental role of plant hydraulics in driving stomatal aperture in response to VPD_L variation. A clear distinction in stomatal sensitivity to VPD_L could therefore be expected between isohydric and anisohydric plant species (e.g. those that hold Ψ_L more constant via stomatal closure vs. those that allow Ψ_L to drop more significantly; Tardieu & Simmoneau 1993), whereby the relatively isohydric species could have stronger stomatal sensitivity to VPD_L compared to anisohydric ones. For instance, Cunningham (2004) found higher stomatal sensitivity in tropical trees relative to temperate ones, and suggested that these responses could be linked to their isohydricity (i.e., higher stomatal sensitivity in isohydric species relative to anisohydric ones). However, no measure of water potential was conducted in this study to confirm this hypothesis. Although identifying such behaviors could have strong implications for vegetation models, most studies investigating isohydric/anisohydric strategies have been strongly focused on soil moisture responses (e.g. Martinez-Vilalta et al., 2014), and the evolution of leaf-level variables over timescales of weeks. Frameworks that mathematically link isohydricity and sensitivity to VPD_L have been recently developed (Sperry et al., 2017; Novick et al., 2019), but await extensive empirical validation, and must contend with the fact that VPD_L and soil moisture are coupled at long (weekly), but not short (i.e. diurnal) timescales. Improving our interpretation and predictive
power will require future work to investigate how these processes vary between plant functional
groups, and how trait coordination within plants relates to stomatal sensitivity to V_{PD_L} and could
vary in predictable ways along environmental gradients. Furthermore, scaling-up these leaf- or
plant-level responses to V_{PD_L} at ecosystem- or landscape-scales would be needed to assess the
impacts of these different stomatal behaviors on the global water cycle and feedbacks to climate
regulation.

2. Variability in G_{surf} sensitivity across ecosystems

For decades, sap flow measurements and eddy covariance flux towers have provided rich
information about the relationship between canopy stomatal function and V_{PD} (e.g., Pataki et al.,
1998a; Baldocchi 2003) though caution is required when using this approach to estimate the
stomatal sensitivity to V_{PD} as differences between canopy and air temperature need to be
accurately accounted for (Schymanski & Or 2017). Further, when using flux tower data to draw
inference about transpiration and canopy conductance, care should be taken to exclude data
collected when soil and canopy interception and evaporation represent a large fraction of
measured evapotranspiration (ET) (for example, by filtering for conditions when the canopy and
soil are wet, Fig. 4).

Tower-derived observations of ET, and also sensible heat and momentum fluxes, are
sufficient to invert the Penman-Monteith (P-M) equation for ET to produce stand-level surface
canopy conductance (G_{surf}, Kim & Verma 1991). The P-M equation (Penman 1948, Monteith
1965) is a widely used model for transpiration and ET that is most commonly applied at the
ecosystem scale, which matches the scale at which flux tower data are collected. It blends
approaches for modeling transpiration and ET emerging from both conservation of mass and
energy. It is forced by net radiation, VPD, wind speed, and temperature. The model requires an
estimate of both surface and aerodynamic conductance to water vapor, but the latter can be
estimated with reasonable confidence from wind observations and a priori assumptions about key
meteorological length scales (including the momentum roughness length and the zero-plane
displacement, see Novick et al., 2016 for example). Thus, all of the input variables to the P-M
equation are “known” from flux tower data except G_{surf}, so that the equation can be solved for G_{surf}
to create a half-hourly timeseries. While G_{surf} is not a perfect proxy for g_s, as it contains
information reflecting both stomatal and soil resistance to evaporation, these interactions can be minimized through careful data screening or ET partitioning (Sulman et al., 2016; Li et al., 2019).

Across sites and biomes, G_{surf} measurements consistently confirm the typical inverse and non-linear relationship between conductance and VPD (Novick et al., 2016; Li et al., 2019, Fig. 4). From one site to the next, the parameters of the relationship between tower-derived G_{surf} and VPD vary, reflecting cross-site differences in canopy structure, soil properties, and species. For instance, using ET measurements, and derived G_{surf} estimations from 38 Ameriflux sites spanning a wide range of biomes, Novick et al., (2016) demonstrated that the relationship between G_{surf} and VPD is dependent on moisture regimes. Moreover, the sensitivity of G_{surf} to VPD was strongly reduced when moving from mesic to xeric sites (Fig. 4), suggesting stronger VPD control on gas exchange in wetter regions relative to drier ones. Furthermore, these findings suggest that the relative importance of VPD in driving G_{surf} may be especially increased in mesic ecosystems in the future with global warming (Novick et al., 2016), as $dG_{surf}/dVPD$ is especially steep when VPD is relatively low, consistent with hydraulic theory (McDowell & Allen 2015). At the same time, stomatal sensitivity to VPD can also shift within a given ecosystem in response to climatic variability. For example, atmospheric warming and increased VPD were found to reduce stomatal sensitivity to VPD, resulting in deterioration of water dynamics and reduced gas exchange, independently of precipitation regimes (Grossiord et al., 2018). Interestingly, this response varied between isohydric and anisohydric species, suggesting some link between isohydricity and sensitivity to VPD (Grossiord et al., 2017b).

However, when structural, functional and climatic characteristics of the biome are controlled for by dividing the G_{surf} by a reference conductance at VPD = 1 kPa, the relationship between G_{surf} and VPD becomes much more generic across sites (Novick et al., 2016; Li et al., 2018, Fig. 4). Specifically, the ecosystem-scale m is 0.5 ± 0.07 when ensemble-averaged across sites. This result agrees well with theory, and species leaf-level results, as described in the last section (e.g. Oren et al., 1999), and confirming the usefulness of G_{surf} as a proxy for stomatal conductance. Encouragingly, analysis of G_{surf} estimated from weather station data using the so-called ETRHEQ approach (for Evapotranspiration from Relative Humidity at Equilibrium) also produced reasonable convergence in the normalized VPD response across sites (Rigden et al., 2018). While not a direct observation of ET, the ETRHEQ is highly data-driven, and shows great potential for increasing our understanding of ET and G_{surf} dynamics in biomes where
meteorological stations are more abundant than flux towers. Ultimately, these ecosystem-scale relationships have many practical uses and applications. Most land-surface models have a stand-scale resolution, and new approaches representing stomatal sensitivity to VPD benefit from testing with ecosystem-scale data (e.g. Bonan et al., 2014; Franks et al., 2018). They could also inject dynamic plant feedbacks into drought monitoring indices like the Palmer Drought Severity Index, particularly if those indices use a P-M type formulation to represent ET (Ficklin et al., 2015). Finally, estimates of conductance from flux towers already have a rich and continuing history of being blended with remotely-sensed vegetation indices and models like P-M to develop coarse-scale conductance and ET data products (Hulley et al., 2017).

V. Impact of high VPD on carbon and water relations and drought-induced mortality

1. Transpiration, photosynthesis and gross ecosystem productivity responses to high VPD

Plant- and ecosystem-level transpiration responses to increasing VPD are complex, and encompass increasing and decreasing water use and sap flux velocity depending on the range of VPD and on other environmental variables like soil moisture (Whitehead & Jarvis 1981; Benyon et al., 2001). Earlier work has shown that although leaf water potentials and gs strongly decrease with rising VPD, transpiration rates tend to increase and remain high for a wide range of species originating from distinct habitats, consistent with the “feed-back” response discussed in section III (Granier et al., 1992; Pataki et al., 1998b; O’Grady et al., 1999; Meinzer et al., 2003; Bovard et al., 2005; Hölscher et al., 2005; Kupper et al., 2011, but see Whitley et al., 2013 among others for evidence of a “feed-forward” response leading to reduced T with high VPD). This response leads to a more rapid depletion of soil moisture, thereby increasing the risk of experiencing drought stress faster, particularly if high VPD conditions are combined with reduced precipitation (Will et al., 2013; Duan et al., 2014).

Photosynthetic carbon assimilation (A) is directly related to stomatal conductance, but this relationship is mediated by the intrinsic water use efficiency (iWUE = A/gs), so that the response of photosynthesis to VPD depends on the stomatal sensitivity to VPD, but also on the extent to which iWUE itself changes as VPD rises. Some clues about the nature of the iWUE=f(VPD) relationship emerge from gas exchange theory, which implies a saturating (or hyperbolic) relationship between A and gs (Farquhar & Sharkey, 1982). When VPD is relatively low, initial
increases in VPD will reduce g_s but not A, such that iWUE increases with increasing VPD. However, eventually, severe restrictions to g_s imposed by high VPD will limit A, which may be independently decreased by declining soil moisture and non-stomatal limitations to biochemical capacity, including reduced mesophyll conductance (Flexas et al. 2012). As a result, iWUE will saturate or even decline as VPD continues to rise. Thus, the overall relationship between iWUE and VPD is likely hyperbolic (Zhang et al., 2019), and the sensitivity of photosynthesis to VPD will likely be weaker than the sensitivity of conductance to VPD.

Both tree-rings and eddy covariance flux towers are useful tools for testing this prediction across sites and over long periods of time. The isotopic composition of tree rings can be analyzed for information about historic change in iWUE (Francey & Farquhar 1982). Flux towers provide information about stand level photosynthesis (i.e. gross ecosystem productivity, or GEP) as well as surface conductance, such that stand-level iWUE can be calculated as GEP/G_{surf}. Several recent studies have focused explicitly on the sensitivity of iWUE and GEP to historic changes in VPD. Although these studies commonly do not separate temperature from VPD impacts, the effects of rising CO$_2$ were accounted for by using various statistical approaches such as removing low-frequency trends (e.g. Andreu-Hayles et al., 2011) or partial least squares regressions (e.g. Wang et al., 2018). In general, these studies find that the relationship between iWUE and VPD is positive (Andreu-Hayles et al., 2011; Franks et al., 2015; Wang et al., 2018), with the predicted unimodal relationship between iWUE and VPD being observed in some sites that experience exceptionally high VPD. Practically, and as illustrated in Fig. 4, this means that the sensitivity of photosynthesis to VPD is relatively less than the sensitivity of conductance to VPD, but nonetheless substantial. Moreover, several recent tree-ring studies identify rising VPD (considered concurrently with increasing temperature) as an important limitation to tree growth (Williams et al., 2013; Babst et al., 2019; Yi et al., 2019), suggesting that among other processes (e.g. reduction in phloem transport), reductions to photosynthesis at high VPD could be sufficient to limit the supply of carbon to growth sinks, at least for current climate conditions.

Moreover, to persist in response to high temperature and VPD rise, plants will need to regulate their temperature, particularly of photosynthetically-active tissues. During periods of optimum soil water supply and non-limiting VPD_L, plants can passively thermoregulate their foliar temperature with their transpiration flux (Mahan & Upchurch 1988). The “cooling effect” of T arises because a substantial amount of energy that would otherwise heat the leaf is used to convert
Each mole of liquid water to water vapor. Extended periods of high T (resulting from high VPD) could result in an impaired cooling of leaves, and in heating of plant canopies (Gates 1968), particularly if combined with drought-stress. In general, plants can adjust efficiently to higher temperatures by shifting their temperature optimum, in temperate regions within a few hours. However, when canopy temperatures are chronically beyond an optimal temperature threshold, photosynthetic rates will decrease and reduce the capacity of plants to perform vital functions, including taking up carbon from the atmosphere through photosynthesis (Berry & Bjorkman, 1980). At high foliar temperature mostly occurring during heat waves and depending on the duration of exposure ($T_{\text{leaf}} > 40^\circ C$), cellular injury such as protein denaturation, inactivation of enzymes in chloroplasts, loss of membrane integrity or even cell death can occur, leading to a lethal collapse of the cellular organization (Teskey et al., 2015; Wahid et al., 2007). These injuries eventually lead to inhibition of growth and diminish photosynthetic uptake of carbon. As heat waves are often, but not always, accompanied by drought the susceptibility to heat induced damages is exacerbated significantly. However, although foliar thermoregulation is a crucial process for the long-term maintenance of terrestrial ecosystems, few studies have investigated the mechanisms driving this process, the interaction between thermoregulation, plant water relations, and high VPD, and their feedbacks to ecosystem resilience.

2. Role of high VPD in drought-induced plant mortality

Elevated VPD has been implicated as having a significant role in recent and future drought-associated mortality events (Breshears et al., 2013; Stovall et al., 2019). Observations of recent vegetation die-offs (widespread and fast mortality events) of conifers in southwestern USA have been more strongly correlated with VPD than with either temperature or precipitation anomalies (Williams et al., 2013). For conifers throughout the northern hemisphere, the implication of rising VPD is widespread range reductions due to elevated mortality (McDowell et al., 2016). Rising VPD may also be involved in driving increased Amazonian tree mortality (Brienen et al., 2015; McDowell et al., 2018). Consistent with this, multiple studies have droughted trees to death more rapidly via elevated temperature treatments in greenhouse settings (Adams et al., 2009; Will et al., 2013; Zhao et al., 2013), but no manipulative mortality studies have yet attempted to disentangle the impacts of elevated VPD and high temperature.
In addition to the observations of growth and mortality that are consistent with a growing VPD limitation, theory suggests that rising VPD must impact plant hydraulics such that vegetation shifts, including rapid mortality, are likely. Fundamentally, the mechanisms by which rising VPD may accelerate the risk of mortality are consistent with the transpiration and stomatal responses to VPD. Specifically, if elevated VPD causes elevated ET it should increase the risk of hydraulic failure, or catastrophic dehydration, by exacerbating the water potential drop within foliage and wood (Will et al., 2013; Cochard 2019). This effect is amplified by an enhanced VPD-driven evaporation resulting in soil water loss and desiccation, increasing drought stress via lack of soil water (Fig. 5a). Ultimately, higher ET should result in less time required to reach a threshold beyond which ET must decline and as hydraulic failure (defined as the percentage loss of conductance in Fig. 5a) must increase. Stomatal closure during periods of elevated VPD may also promote declining growth and allocation to carbohydrates via reduced photosynthesis (Fig. 5b), which if the stomatal closure is sufficiently strong and prolonged, could lead to carbon starvation (Martinez-Vilalta et al., 2002) including failure to defend against biotic attack (Fig. 5c; McDowell et al., 2011).

Long-term field experiments where atmospheric temperature and VPD are manipulated and combined are particularly useful for anticipating the impacts of rising VPD on plant mortality risks, particularly as the effects may occur in cascades (i.e., short vs. long-term impacts, Fig. 5). Several systems have been established where the independent and combined effects of drought, heat stress or high atmospheric [CO₂] are tested on tree functioning (e.g. Hanson et al., 2011; Grossiord et al., 2017a), but to our knowledge only one field experiment manipulates VPD, independently from other drivers (Kupper et al., 2011). Using mist fumigation in experimental forest plots in south-eastern Estonia, the free air humidity manipulation (FAHM) increase air humidity over ambient levels, thereby reducing VPD. The experiment revealed that high humidity (i.e., low VPD) resulted in reduced T, aboveground growth and photosynthesis (reviewed in Oksanen et al., 2018). However, while some effects may be attributed to reduced VPD, others may be partially explained by the condensation of water onto the leaf surface induced by the misting system employed at the site. Water retention on the leaf surface could directly impair stomatal functioning, gas exchange and photosynthesis (Ishibashi & Terashima, 1995). New experiments combining multiple stresses (e.g. VPD × temperature or VPD × drought) are urgently needed to help bring some light on the longer-term plant survival under rising VPD.
VI. Modeling plant and ecosystem responses to vapor pressure deficit

1. At the plant-level

Three approaches can be distinguished for modeling the stomatal response to vapor pressure deficit: mechanistic, empirical, and goal-oriented. Mechanistic models predict the stomatal response from known or hypothetical stimulus-response pathways (Buckley & Mott 2013; Pieruschka et al., 2010). They are useful for studying these pathways and directing their further study but the physiological parameters in some versions of such models are difficult to estimate experimentally, making them impractical for general predictive purposes (Buckley & Mott 2013). However, mechanistic models have been successfully adapted and applied in woody crops (e.g., Diaz-Espejo et al., 2012; Rodriguez-Dominguez et al., 2016) and forest trees (e.g., Buckley et al., 2012; Wang et al., 2016).

The empirical approach to modeling the G_L response to VPD_L (as actively controlled by the stomatal g_s component) does not require mechanistic closure and is perhaps most widely used for prediction (Kennedy et al. 2019; Rowland et al. 2015). The stereotypical stomatal closure response to increasing VPD_L lends itself to curve fitting, and a host of similar equations have been used to express G_L as monotonically declining with VPD_L (Fig. 6a). Multiplying the $f(VPD_L)$ function by the photosynthetic rate (A) can account for independent interactions with photosynthesis (as in Fig. 6a: hyperbolic, inverse, inverse sqrt, Jarvis, Ball-Berry curves) (Leuning 1995). The curve fitting parameters determine a maximum G_L at low VPD_L and determine the rate of G_L decline as VPD_L increases (the stomatal sensitivity to VPD_L). Once fitted to past data, the parameters are used to extrapolate the future. One challenge is knowing which model is best for every situation, because though qualitatively similar in representing stomatal closure with VPD_L (6A), there are fundamental differences in the transpiration response (Fig. 6b). Some functions predict a peak in T, others a plateau or gradual rise, one gives a flat T response (inverse without A), and one a decline (inverse with A). Another challenge is that the fitted parameters for the chosen model will vary within species as factors such as soil moisture or CO$_2$ concentration change, and they will vary across species. Progress can be made by recognizing that greater maximum G_L correlates with greater sensitivity (Kaufman 1982; Oren et al. 1999; Yong et al. 1997) and that maximum G_L is also a function of soil moisture, ambient CO$_2$, and other environmental cues (Leuning 1995). More curve fitting can be used to handle these interactions.
for particular situations (Jarvis 1976), but in the absence of any guiding principle the empirical approach is difficult to generalize with confidence.

Goal-oriented modeling based on an optimization criterion has the greatest potential for prediction. If we assume a physiological objective of stomatal regulation, and if we can model that objective, we automatically know how the stomata must behave in any situation to realize the assumed goal. Such a model will be equally consistent in its predictions regardless of the combination of environmental stimuli or underlying mechanism. An early goal-oriented model proposed that stomata regulate so as to maximize the cumulative photosynthesis for a fixed amount of cumulative transpiration over a given period of time (Cowan & Farquhar 1977). This predicts that stomata act to maintain \(\frac{dT}{dA} = \lambda \), where \(\lambda \) is the Lagrangian multiplier for this constrained-optimization problem. The challenge is \textit{a priori} knowledge of what \(\lambda \) should be as a function of plant and environment. Without knowing what \(\lambda \) should be ahead of time, the modeler is effectively using an empirical approach where \(\lambda \) is derived by fitting data (e.g. Fig. 6, blue dashed; (Medlyn et al. 2011).

A more tractable stomatal goal is to prevent leaf xylem pressure (\(P \)) from ever dropping below some threshold (\(P_t \)) which represents the onset of stress-induced damage such as loss of turgor or hydraulic conductance (Oren et al. 1999; Pieruschka et al. 2010; Tyree & Sperry 1988). The stomatal response at \(P = P_t \) and steady-state is calculated as \(G_L = K / VPD_L \cdot (P_{soil} - P_t) \), where \(K \) is the soil-to-canopy hydraulic conductance per leaf area and \(P_{soil} \) is the soil water potential (Fig. 6, yellow dashed "inverse-A" curve). This equation incorporates plant hydraulic traits into the \(G_L \) response and predicts several observations (Oren et al. 1999): a) As \(P \) falls to \(P_t \), \(G_L \) approaches an inverse function of increasing \(VPD_L \), which is broadly consistent with empirical equations for the \(VPD \) response (Fig. 6a, compare yellow-dashed line), b) \(G_L \) at a given limiting \(VPD_L \) decreases with more negative \(P_{soil} \), c) \(G_L \) sensitivity to \(VPD_L \) increases with a greater maximum \(G_L \), d) \(G_L \) scales proportionately with \(K \), e) The initial rise in \(T \) with \(VPD_L \) saturates as \(P \) approaches \(P_t \), f) A decline in \(T \) that is occasionally seen at high \(VPD_L \) (Franks et al. 1997) is consistent with a drop in \(K \) under such conditions. Easy to implement, and consistent with at least some mechanistic hypotheses (Pieruschka et al. 2010), such a scheme can improve large scale models (Williams et al. 1996). But the approach is too simple. It predicts a strictly isohydric response to rising \(VPD_L \) (Fig. 6b, \(T \) is constant with \(VPD_L \); yellow dashed line) and falling \(P_{soil} \), when most species are anisohydric in allowing \(P \) to become more negative (Martinez-Vilalta et al. 2014). Moreover, by itself the approach cannot account for the independent feedbacks between photosynthesis and \(G_L \).
More recent goal-oriented approaches also incorporate plant hydraulics, but propose that stomata balance the stress-related risk of opening with the opportunity for photosynthetic gain (Mencuccini et al. 2019; Wolf et al. 2016). The risk can be calculated from a cavitation vulnerability curve, and it eventually rises non-linearly with continued stomatal opening, reaching a maximum when T induces complete hydraulic failure. The gain rises immediately on stomatal opening and continues to a maximum as modeled photosynthesis saturates. Setting the maximum risk and gain to 1 gives them equal weight in the trade-off, and the actual stomatal opening that maximizes the gain minus the risk at that instant can be calculated (Sperry et al. 2017). This algorithm produces a V_{PD_L} response very similar to many empirical models (Fig. 6, red lines), and integrates interactions with light, temperature, ambient CO$_2$, and soil moisture. The degree of anisohydry (i.e., the degree to which T increases with V_{PD_L}; Fig. 6b red line) is dictated by photosynthetic capacity and vulnerability to cavitation. Importantly, the responses can be predicted a priori from traits of photosynthetic and hydraulic capacity. Quantitatively the gain-risk approach fits experimental observations as well or better than empirical models (Venturas et al. 2018; Wang et al. 2019). Different formulations of the optimal gain vs. stress trade-off are possible (Eller et al. 2019; Mencuccini et al. 2019), including additional considerations such as phloem export (Hölttä et al. 2017; Huang et al. 2018). But the temptation to complicate comes at the risk of adding unknown parameters which have to be retroactively fit, reducing predicting power. Nevertheless, modeling the stomatal response from a gain vs. stress trade-off appears to be a promising way to improve over the purely empirical approach.

2. At the global-level

Land-surface models represent processes that regulate the exchange of carbon, water and energy fluxes between the atmosphere and biosphere by coupling plant physiology with vegetation dynamics (Sellers et al., 1996). Despite a large variety of land-surface modeling approaches, the models are similar in that they aim to scale processes that occur at the leaf- and individual organism-level to investigate global-scale questions and can be applied in either offline or fully coupled ‘online’ simulations with general circulation models providing meteorology. A range of land-surface modeling approaches exist where at the highest level, models can be split between whether they use diagnostic or prognostic approaches, with diagnostic approaches combining simple light-use efficiency models with remote-sensing observations for variables like the
normalized difference vegetation index, leaf area index or soil moisture, for example (see Yuan et al., 2019). In contrast, prognostic models aim to represent ecosystem dynamics with numerical representations of processes using semi-empirical to fully mechanistic approaches (Bonan et al., 2003). These include the category of ‘dynamic global vegetation models’ that represent demography via establishment, growth and mortality (Sitch et al., 2013).

Plant physiological responses to VPD are linked to vegetation mortality in land-surface models in one or more of several interacting ways, these include; carbon deficits via negative net primary production (NPP) or declines in growth efficiency and water stress via hydraulic failure, in addition to mortality via non-VPD related processes such as heat stress or light competition (Prentice et al., 2007; McDowell et al., 2011). Land-surface models operate on the principle of balancing water demand with water supply. The models generally compute atmospheric water demand, i.e., \(E_{demand} \) or VPD, by using gridded fields of observed or simulated vapor pressure (Harris et al., 2013) using the Penman-Monteith approach and estimate the assumed saturated vapor pressure within the leaf, from air temperature or with simple biophysical models to estimate leaf temperature. Alternatively, \(E_{demand} \) can be estimated from empirical relationships relating evaporation efficiency and surface conductance with air temperature and longwave radiation (Monteith 1995). Land-surface models diverge in terms of how \(E_{demand} \) is related to \(g_s \). Models with sub-daily timesteps, such as CLM (Bonan et al., 2003), ORCHIDEE (Krinner et al., 2005), ED (Moorcroft et al., 2001) or JULES (Best et al., 2011), use modifications of the Ball-Berry model (Ball et al., 1987) to relate VPD to \(g_s \). Other models, with daily or greater timesteps, i.e., LPJ (Sitch et al., 2003), modify non-water stressed conductance by the ratio of \(E_{demand} \) and \(E_{supply} \), where \(E_{supply} \) is related to plant available water in the soil column. In both approaches, stomatal closure induced by increasing VPD leads to less GEP and thus lower growth efficiency or negative NPP related mortality.

Alternative schemes for linking VPD with plant mortality use a hydraulic architecture approach to estimate the water-potential along a soil-plant-atmosphere continuum. This modeling approach, also known as SPA, or the soil-plant-atmosphere canopy model (Williams et al., 1996), calculates the transport of water, i.e., the supply, as proportional to hydraulic gradients and resistances along the continuum. Water potentials for the soil, stem and leaves, emerge as prognostic variables related to water availability, tree height, and tissue properties. The implementation of SPA-based modeling theory into land-surface models is an active area of research (Hickler et al., 2006; Bonan et al., 2014; Christofferson et al., 2014; Mencuccini et al.,

This article is protected by copyright. All rights reserved
2019) as it provides a more mechanistic approach for linking g_s with atmospheric water demand and soil water availability. In addition, hydraulic architecture modeling approaches provide a more direct link to simulating mortality because of how they control hydraulic failure and xylem cavitation (McDowell et al., 2011). Modeling approaches simulate the loss of conductance due to cavitation as an s-shaped vulnerability curve, where cavitation is related to water-potential that causes a 50% loss of conductivity (Tyree and Sperry 1989; Hickler et al., 2006). Some land-surface models incorporate acclimation processes by altering carbon allocation to above (stem) and belowground (root) pools, which can then feedback into modifying the whole-pathway resistances that contribute to the leaf water potentials and ultimately, the leaf conductance (Hickler et al., 2006).

Simulated leaf and canopy conductance, their environmental responses, and interannual and decadal dynamics are evaluated using a range of techniques (Yuan et al., 2019). These include comparisons with flux towers (Blyth et al., 2010; Raczka et al., 2013), tree rings (Frank et al., 2015), and cuvette measurements (Cernusak et al., 2013). Key questions on the relationship between the global carbon and water cycles have been advanced by understanding the role of VPD and canopy conductance processes that bridge spatial scales (Jung et al., 2017), soil moisture (Humphrey et al., 2018) and vegetation dynamics (Stocker et al., 2019). These studies include broader insights into hydrologic responses to VPD via changes in runoff, coupling with the atmosphere due to adjustments in surface roughness, and partitioning of radiation vs. VPD effects on photosynthesis (Roderick et al., 2014; Greve et al., 2017).

VII. Conclusion

Global VPD has increased over recent decades (Fig. 1), and is expected to continue rising in the future. High VPD conditions reduce stomatal conductance and photosynthesis while simultaneously increasing plant water losses through transpiration. Although these impacts vary across biomes and plant functional types, and may be mitigated in part on the long-term by increasing CO$_2$ concentrations, they will likely result in reduced primary productivity and amplified drought-induced plant mortality worldwide. To enable mechanistic predictions of future VPD impacts at local- and global-scales, key processes driving plant responses to VPD need to be addressed in future work. Many advances have been made in recent years in our modeling approaches of VPD impacts at plant- and global-scales, but future developments will require further progress in our empirical knowledge of plant responses to rising VPD. For instance, no
consensus exists about the exact sensing mechanisms driving stomatal closure to rising VPD (and whether they respond differently to temperature- vs. humidity-driven changes in VPD), and how these mechanisms may vary between plant functional groups or along environmental gradients. Future work should focus on separating temperature vs. humidity driven impacts of VPD by using controlled experiments (e.g. growth chambers; humidity manipulation in the field), possibly across a broad range of species. Furthermore, modeling and empirical efforts should be directed towards the antagonistic impacts of VPD rise and other projected changes such as increasing atmospheric CO$_2$ concentrations, reduced precipitation and global warming.
Acknowledgements

CG was supported by the Swiss National Science Foundation SNF (5231.00639.001.01). TNB was supported by the National Science Foundation (Award 1557906) and the USDA National Institute of Food and Agriculture (NIFA) (Hatch project 1016439). BP was supported by the NASA Terrestrial Ecology Program. KN was supported by the USDA NIFA Agriculture and Food Research Initiative (Grant 2017-67013-26191) and NSF (Award 1552747). We would like to thank the reviewers and the editor for their thoughtful comments and efforts towards improving the manuscript.
References

This article is protected by copyright. All rights reserved

Buckley TN. 2016. Commentary: Stomatal responses to humidity: has the "black box" finally been opened? *Plant, Cell & Environment* 39: 482-484

This article is protected by copyright. All rights reserved

Greve P, Roderick ML, Seneviratne SI. 2017. Simulated changes in aridity from the last glacial maximum to 4xCO2. Environmental Research Letters **12**: 114021.

Intergovernmental Panel on Climate Change. 2019. Climate Change and Land: An IPCC Special Report on climate change, desertification, land degradation, sustainable land management, food security, and greenhouse gas fluxes in terrestrial (Summary for Policymakers) ecosystems. Intergovernmental Panel on Climate Change (IPCC): Geneva.

Penman HL. 1948. Natural Evaporation from Open Water, Bare Soil and Grass. Proceedings of the 622 Royal Society of London Series a-Mathematical and Physical Sciences 193: 120.

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

This article is protected by copyright. All rights reserved

Supporting information:

Figure S1. Response of net CO$_2$ assimilation rate to leaf-to-air vapor pressure deficit in four species.
Box 1 List of abbreviations

VPD = air vapor pressure deficit (commonly in kPa)

VPD\(_L\) = leaf-to-air vapor pressure deficit (commonly in kPa)

e\(_s\) = saturation vapor pressure (commonly in kPa)

e\(_a\) = actual vapor pressure (commonly in kPa)

RH = relative humidity in the atmosphere (commonly in %)

g\(_s\) = stomatal conductance (commonly in mol of H\(_2\)O m\(^{-2}\) s\(^{-1}\))

g\(_s\)\(_{ref}\) = g\(_s\) at 1 kPa VPD

\(\Psi\)\(_L\) = leaf water potential (commonly in MPa)

\(K\)\(_{leaf}\) = leaf hydraulic conductance (commonly in mmol of H\(_2\)O m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\))

\(G\)\(_{surf}\) = stand-level surface canopy conductance (commonly in mol of H\(_2\)O m\(^{-2}\) s\(^{-1}\))

\(A\) = photosynthetic CO\(_2\) assimilation (commonly in \(\mu\)mol of CO\(_2\) m\(^{-2}\) s\(^{-1}\))

\(T\) = transpiration (commonly in mm of H\(_2\)O d\(^{-1}\))

\(\delta^{13}\)C = carbon isotopic composition (commonly in ‰)

c\(_i\)/c\(_a\) = the ratio of intercellular (c\(_i\)) to ambient (c\(_a\)) CO\(_2\) concentrations

[CO\(_2\)]\(_a\) = atmospheric carbon dioxide concentration (commonly in ppm)

\(m\) = slope between g\(_s\) and ln(\(VPD\)) (commonly in mol of H\(_2\)O m\(^{-2}\) s\(^{-1}\)ln(Kpa))

\(ET\) = evapotranspiration (commonly in mm of H\(_2\)O d\(^{-1}\))

\(NPP\) = net primary productivity (commonly in g C m\(^{-2}\) y\(^{-1}\))

\(GEP\) = gross ecosystem-level productivity (commonly in g C m\(^{-2}\) y\(^{-1}\))

\(iWUE\) = intrinsic water use efficiency (commonly in \(\mu\)mol of CO\(_2\) \(\mu\)mol\(^{-1}\) of H\(_2\)O)

\(\lambda\) = Lagrange multiplier

\(P\) = leaf xylem pressure (commonly in MPa)

\(K\) = soil-to-canopy hydraulic conductance per leaf area (commonly in mmol of H\(_2\)O m\(^{-2}\) s\(^{-1}\) MPa\(^{-1}\))

\(P\)\(_{soil}\) = soil water potential (commonly in MPa)

\(V_{\text{max}}\) = maximum carboxylation velocity (commonly in \(\mu\)mol of CO\(_2\) m\(^{-2}\) s\(^{-1}\))

\(J_{\text{max}}\) = maximum rate of electron transport (commonly in \(\mu\)mol of CO\(_2\) m\(^{-2}\) s\(^{-1}\))
Figure legends

Figure 1: Trend in annual vapor pressure deficit (VPD) for the period 1901-2017 estimated using VPD calculated from air temperature and vapor pressure from the Climate Research Unit (CRU) version TS 3.26 (Harris et al., 2014) with regional boundaries superimposed (a), and percent change in VPD relative to 1901 averaged for regions. Bold lines have a 10-year smoothing function applied (BNA, Boreal North America; TNA, Temperate North America; TRSA, Tropical South America; TESA, Temperate South America; NAf, Northern Africa; SAF, Southern Africa; BEu, Boreal Eurasia; TEu, Temperate Eurasia; TAs, Tropical Asia; AUS, Australia; EUR, Europe; NAfs, Northern Africa semi-arid; SAFs, Southern Africa semi-arid) (b).

Figure 2: Relationship between atmospheric vapor pressure (kPa), and relative humidity (%) as a function of air temperature. The bold line represents the saturation vapor pressure (e_s) as a function of temperature (i.e. 100% humidity at any given temperature). Vapor pressure deficit (VPD, kPa) represents the difference between e_s (i.e. bold line) and the actual vapor pressure at a given temperature (dotted lines). Panel (a) shows shifts in VPD for one scenario representing typical temperature changes during extreme heat waves: relative humidity remains constant at 20% (red dotted line) but temperature increase from 25°C to 35°C resulting in an increase in VPD of 2.0 kPa (i.e. from 2.5 kPa to 4.5 kPa, red arrows). Panel (b) shows shifts in VPD corresponding to projected long-term changes in temperature and humidity under a business-as-usual scenario: relative humidity remains stable (20%; red dotted line) and air temperature rises by 5°C (from 25°C to 30°C) resulting in an increase in VPD of 0.9 kPa (i.e. from 2.5 kPa to 3.4 kPa, red and yellow arrow). The figure highlights that with rising temperature we should expect a simultaneous increase in VPD both under extreme events (a) as well as on the long-term (b).

Figure 3: Sample steady state (a) and dynamic (b) responses of stomatal conductance (g_s) to VPD. Data are reproduced from (a) Mott & Parkhurst (1991), and (b) Buckley (2016). In (a), the symbols are experimental measurements, and the lines are theoretical responses using the empirical model of Oren et al. (1999) ($g_s = g_{s, ref} \cdot (1 - m \cdot \ln(VPD/VPD_{ref}))$, where $g_{s, ref}$ is the value of g_s at $VPD = VPD_{ref} = 1$ kPa (taken from the experimental measurements in this example; $g_{s, ref} = 0.43$ mol m$^{-2}$ s$^{-1}$), and m represents the slope between g_s and $\ln(VPD)$; the numbers shown to the right of each line is the corresponding value of m.

Figure 4: Eddy covariance flux data are useful for understanding how the response of surface conductance (left column) and gross ecosystem productivity (right column) respond to vapor
pressure deficit (VPD). When shown as absolute values, both conductance and gross ecosystem productivity (GEP) are negatively related to VPD, but the variability from one site to the next is quite large (see absolute values). However, if the site-level data are normalized by their rates at a reference VPD of 1 kPa, the cross-site variability at a given VPD is considerably reduced, particularly for conductance (see relative values). As predicted from theory, the sensitivity of conductance to VPD (m) is greater than the sensitivity of GEP to changes in VPD, reflecting that fact that intrinsic water use efficiency (iWUE) often increases with rising VPD. The gray shaded area shows the range of the model $y = 1 - m \cdot \ln (VPD)$, for the range of m represent +/- 3 S.E. for the slope parameter derived from linear regression. Data represent a subset of the FLUXNET Tier1 tower sites, where GEP is provided by FLUXNET, and G_s is estimated following the approach of Novick et al. (2016). To reduce confounding effects from radiation and soil moisture, which co-vary with VPD, this analysis was limited to periods of high radiation (> 400 W/m2) and the site-specific curves represent the average of responses determined within unique soil moisture bins ($n = 5$ at each site).

Figure 5: Conceptual figure highlighting the potential mechanisms of hydraulic failure and carbon starvation during drought under low and high vapor pressure deficit (VPD). After drought inception (red dashed vertical line) and under constant low (blue) or high (orange) VPD, evapotranspiration (ET) will decrease as soil moisture declines but the drop in ET will occur earlier and be faster under high VPD. Thus, hydraulic failure (defined here as the percentage loss of conductance, PLC, the orange dashed and dotted blue lines) will occur faster under high VPD due to increasing embolism (a); growth (dotted black line) and carbon uptake through photosynthesis will decline more rapidly under higher VPD due to lower PLC and increasing tissue temperature (b); non-structural carbohydrates (NSC) content and defensive capacity increases for a short term due to the imbalance of growth and photosynthesis declines, with a more rapid NSC and defensive capacity loss in higher VPD environments (c). Ultimately, the risk of drought-induced mortality through hydraulic failure (a) and carbon starvation (c) are higher and more rapid under increasing VPD.

This article is protected by copyright. All rights reserved
Figure 6: Nine model scenarios of the stomatal response to leaf-to-atmosphere vapor pressure deficit, VPD_L. (a) Response of leaf diffusive conductance to water vapor (G_L). (b) Response of leaf transpiration rate (T). Red curve is the gain-risk model and the dashed blue is the $\lambda = dT/dA$ model, where λ is constant at the initial (low VPD_L) value from the gain-risk simulation (curves from Sperry et al., 2017). The seven remaining curves were fit to maximize the r^2 with the red gain-risk G_L to facilitate comparison. Five of these curves have G_L proportional to $f(\text{VPD}_L) \cdot A$, where A is the photosynthetic rate taken from the red gain-risk curve. Their five $f(\text{VPD})$ functions were as follows: pink, $1/(1 + \text{VPD}_L / \text{VPD}_o)$ (Lohammer et al., 1980); grey, $1 / \text{VPD}_L$ (Lloyd, 1991); cyan, $1 / \text{VPD}_L^{0.5}$ (Lloyd 1991); brown, $1 - \text{VPD}_L / \text{VPD}_o$ (Jarvis 1976); green, RH, where VPD_L was converted to relative humidity (RH) (Ball et al., 1987). The last two curves have G_L proportional to $f(\text{VPD}_L)$, The $f(\text{VPD}_L)$ functions were: black, $g_{\text{ref}} - m \ln (\text{VPD}_L)$ ($g_{\text{ref}} = G_L$ at $\text{VPD}_L = 1 \text{kPa}$); yellow: $1 / \text{VPD}_L$ (Oren et al., 1999). VPD_o, g_{ref}, and m are curve fitting parameters.
Figure 1
Trend in VPD (kPa per month; 1901–2017)

Percentage change in VPD relative to 1901
Figure 2
Tansley Review 30269
Relative humidity (%)
100
0
202.5kPa
50
20 30 40
2.5kPa
4.5kPa
Vapor pressure (kPa)

(a) (b)
3.4kPa

Air temperature (°C)
50 20 10 30
40
Air temperature (°C)
es at 35°C
es at 30°C
es at 25°C
es at 25°C

This article is protected by copyright. All rights reserved
Stomatal conductance, g_s (mol m$^{-2}$ s$^{-1}$)

Time after VPD increase (min)

VPD (kPa)

(a) (b)

Figure 3

Tansley Review 30269

This article is protected by copyright. All rights reserved
Figure 4

This article is protected by copyright. All rights reserved
Figure 5

(a) ET and PLC

(b) Carbon uptake and growth

(c) NSC concentration

Onset of drought

Time

High VPD
Low VPD

This article is protected by copyright. All rights reserved
Leaf diffusive conductance, G_L (mmol s$^{-1}$ m$^{-2}$)
Leaf-atmosphere vapor deficit, VPD (kPa)
Transpiration rate, T (mmol s$^{-1}$ m$^{-2}$)