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1  | INTRODUC TION

Forested regions around the globe represent ~363 Pg C (equivalent to 
~170 ppm CO2 if released to the atmosphere) and sequester ~2.3 Pg C 
annually, or approximately 25% of annual anthropogenic carbon emis‐
sions (Bonan, 2008; Pan et al., 2011). Tree carbon allocation to leaf 
biomass, and the resultant ratio of leaf area (AL) relative to sapwood 
area (area of tree water transport tissue, AS), influences ecosystem 
carbon drawdown and water loss through the stomata. Leaf alloca‐
tion is shaped both by intrinsic plant physiological traits (Bartlett, 

Scoffoni, & Sack, 2012; Choat et al., 2012) and the local environment 
(Martinez‐Vilalta et al., 2009; Mencuccini & Bonosi, 2001; Mencuccini 
& Grace, 1994). However, due to the elusive nature of the biological 
mechanisms underlying tree leaf allocation, vegetation models often 
determine AL using fixed coefficients or scaling laws. Uncertainty in 
leaf allocation strategy introduced using fixed coefficient or scaling 
law methods impacts AL projections, the ratio of AL:AS, and the sensi‐
tivity of vegetation productivity to environmental drivers.

The objective of this review is to provide an overview of how 
leaf allocation strategy is represented in current state‐of‐the‐art 
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Abstract
Plant functional traits provide a link in process‐based vegetation models between 
plant‐level physiology and ecosystem‐level responses. Recent advances in physio‐
logical understanding and computational efficiency have allowed for the incorpora‐
tion of plant hydraulic processes in large‐scale vegetation models. However, a more 
mechanistic representation of water limitation that determines ecosystem responses 
to plant water stress necessitates a re‐evaluation of trait‐based constraints for plant 
carbon allocation, particularly allocation to leaf area. In this review, we examine 
model representations of plant allocation to leaves, which is often empirically set 
by plant functional type‐specific allometric relationships. We analyze the evolution 
of the representation of leaf allocation in models of different scales and complexi‐
ties. We show the impacts of leaf allocation strategy on plant carbon uptake in the 
context of recent advancements in modeling hydraulic processes. Finally, we posit 
that deriving allometry from first principles using mechanistic hydraulic processes 
is possible and should become standard practice, rather than using prescribed allo‐
metries. The representation of allocation as an emergent property of scarce resource 
constraints is likely to be critical to representing how global change processes impact 
future ecosystem dynamics and carbon fluxes and may reduce the number of poorly 
constrained parameters in vegetation models.
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numerical vegetation models, how allocation impacts internal plant 
water stress, and ultimately how allocation is tied to predictions for 
terrestrial productivity. First, we discuss the theory, history, and 
fundamental limitations of the use of allometric equations, which 
are a common technique used to standardize leaf biomass alloca‐
tion estimates among species or plant functional groups. Second, we 
examine the different representations of plant carbon allocation to 
leaves in vegetation models ranging in scales and complexities from 
single plant models to ecosystem models and large‐scale vegetation 
models. Third, we provide context on the role of leaf allocation in the 
physiology of plant water limitation. Fourth, we propose a way for 
moving forward with prognostic leaf allocation in large‐scale mod‐
els to improve predictive abilities for plant productivity and water 
stress. We conclude with a discussion on how the plant hydraulics 
framework presented here can inform the global optimization prob‐
lem of understanding allocation broadly in the presence of multiple 
limiting resources.

2  | ALLOMETRIC BIOMA SS EQUATIONS: 
HISTORY AND THEORY

The fields of forestry and ecology rely heavily on allometric regres‐
sion equations, which relate tree size to plant biomass, to quantify 
species‐specific allocation strategies. Numerous species‐ and site‐
specific allometric regression models have been developed over the 
years, beginning in prevalence the 1960s, that document the rela‐
tionships between tree size (often diameter at breast height, dbh, 
or diameter at tree base) and plant biomass components, including 
total aboveground tree biomass, stem biomass, bark biomass, branch 
biomass, and leaf biomass (Baskerville, 1972; Chave et al., 2014; 
Jenkins, Chojnacky, Heath, & Birdsey, 2003; Ploton et al., 2016; Ter‐
Mikaelian & Korzukhin, 1997; Whittaker & Woodwell, 1968; Zianis, 
Muukkonen, Mäkipää, & Mencuccini, 2005). These equations are 
useful for many applications. However, literature‐reported single‐
species allometric regression model performance is often no better 
at predicting out‐of‐sample tree allometries than multispecies mod‐
els because substantial intraspecific variation in allocation exists due 
to local environmental conditions (Fayolle, Doucet, Gillet, Bourland, 
& Lejeune, 2013; Lines, Zavala, Purves, & Coomes, 2012). Indeed, it 
has been documented that the largest source of error in scaling from 
trees to forests biomass estimates is error associated with allomet‐
ric model choice, rather than errors in tree measurement or sam‐
pling uncertainty associated with plot size or composition (Chave 
et al., 2004). Furthermore, general allometry equations perform 
particularly poorly when predicting local leaf or tree crown biomass 
(Bond‐Lamberty, Wang, & Gower, 2002; Ploton et al., 2016), making 
allometric regression models inaccurate when determining tree al‐
location strategies to leaves, and consequently increasing tree AL:AS 
uncertainty in out‐of‐sample environmental conditions. Indeed, the 
need to use “local” allometric equations or to validate equations lo‐
cally has long been emphasized in the forestry literature (Ketterings, 
Coe, Van Noordwijk, Ambagau, & Palm, 2001).

Thus, a fundamental question arises: how much does leaf alloca‐
tion (and AL:AS) vary within a species for trees of equivalent size? A 
recently published Biomass And Allometry Database (BAAD) for 
woody plants (Falster et al., 2015) provides initial insights and has 
strong potential for improving our understanding of the complexity 
underlying biotic and abiotic allocation factors. The BAAD is a com‐
pilation of individual‐level allocation data from numerous previously 
published studies that span thousands of individual woody plants, 
hundreds of species, and different growth environments around the 
globe. Although the number of observations with concurrent docu‐
mentation of AL and AS for a given tree within the BAAD is relatively 
sparse (863 observations), assuming tree trunk basal area (BA) as 

proportional to AS 
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enough additional data for us to perform a synthesis of 91 unique 
studies, comprising 9,585 individuals, 338 species, 192 genera, and 
81 families. In addition, BA presumably better reflects the biome‐
chanical and hydraulic limits for AL, making this assumption mecha‐
nistically consistent with our framework relating AL:BA to AL:AS.

We performed variance decomposition to determine the taxo‐
nomic scales of variation in AL:BA. We used linear mixed effects mod‐

els for log
(

AL

BA

)

. First, we built a model including a fixed intercept, fixed 

effect method for calculating AL:AS (directly from measurements of AS 
at DBH or basal height or indirectly from basal diameter or DBH), and 
nested random effects for family, genus, and species. We compared 
the size of the random effects' variance parameters within species 
(i.e., residual variance), within genus, within family, and between fam‐
ilies and found that 50% of the observed variation in AL:BA across the 
BAAD database occurred within species (Figure 1). We then included 
a fixed effect for log(tree height) for each plant species (because AS 
should theoretically increase more rapidly than AL with tree height, as 
resistance to sap flow increases with tree height). Based on the mar‐
ginal R2 of the model with and without the species‐level height effect, 
we determined that roughly three‐fifths of the within‐species 

F I G U R E  1   Taxonomic scales of variation in leaf area divided 
by tree basal area (AL:BA) compared to another widely used plant 
functional trait, wood density (WD), recorded in the Biomass and 
Allometry Database for woody plants (Falster et al., 2015) and the 
Global Wood Density Database (Zanne et al., 2009). Horizontal 
dashed line represents the fraction of within‐species variation in 
AL:BA explained by plant height
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variation (29% of the total variation in AL:BA) could be attributed to 
within‐species variation related to tree size (Figure 1, dashed line). 
Interestingly, within‐species patterns of AL:BA versus height, while 
negative on average, varied enormously across species, both in 
strength and direction (Figures S1 and S2).

The substantial within‐species variation, even when controlling 
for tree size, stands in contrast to numerous other plant functional 
traits that are often included in vegetation models (Rosas et al., 
2019). As an example, we performed an equivalent analysis on wood 
density (WD), a widely used plant functional trait. We leveraged 
the huge within‐species variation in WD within the BAAD, com‐
bined with cross‐species information from the Global Wood Density 
Database (Zanne et al., 2009). Our synthesis comprised of 217 
unique studies, 19,997 measurements, 8,486 species, 1,694 genera, 
and 211 families. In contrast to AL:BA, the majority of the variation 
in WD occurred at large taxonomic scales (e.g., across plant fami‐
lies, Figure 1). The strong intraspecific variation that is particularly 
apparent in AL:BA indicates that environment strongly influences 
AL:BA (~AL:AS), perhaps more so than many common species‐ 
specific functional traits. Thus, while allometric functions relating 
plant size to plant investment in leaves have existed for over half a 
century and are ubiquitous, the generality and out‐of‐sample appli‐
cability of these functions tend to be low, posing considerable chal‐
lenges to the formulation of fixed trait‐based allocation algorithms 
in mechanistic vegetation models. This strong intraspecific variation 
implies that AL:AS may need to be predicted from first principles, 
rather than prescribed as a functional trait.

3  | LE AF ALLOC ATION IN MECHANISTIC 
VEGETATION MODEL S

There are numerous empirical and optimization‐based approaches 
to determining vegetation allocation that often vary with the spa‐
tial scope of the model due to computational costs and trade‐offs 
(Tables 1‒3; De Kauwe et al., 2014; Franklin et al., 2012; Walker  
et al., 2014). In many vegetation models that run at large spatial scales 
and/or over long time periods, vegetation is represented in an aggre‐
gated manner analogous to a “big leaf” in each grid cell due to the 
large computational costs associated with predicting long‐term veg‐
etation dynamics across the globe. In this class of vegetation model, 
allocation often follows an empirical approach where a fixed fraction 
of net primary productivity (NPP) is allocated to each of leaves, stem, 
and fine roots (as well as other costs such as reproduction). This in‐
cludes both models that are coupled to climate models such as the 
Community Land Model (CLM) family, as well as a number of models 
that have not been run coupled to climate models and are generally 
operated at scales smaller than the globe (Tables 1 and 2).

Another class of vegetation model, the “individual”‐ or “cohort‐
based” model, resolves individual plants. Cohort‐based vegetation 
models generally use allometric scaling functions from the forestry 
literature that relate model‐predicted cohort dbh to tree stem, leaf, 
and root biomass using fixed relationships (see Section 2; Tables 1 
and 2). Thus, NPP partitioning to different tree tissues in cohort‐
based vegetation models is determined by fixed plant functional type 
(PFT)‐specific parameters and tree size. Although computationally 

TA B L E  1  Allocation and vegetation hydraulics characteristics in select vegetation models of diverse scales

Model Type
Dynamic 
vegetation?

Plant 
hydraulics? Leaf allocation Reference

ACONITE Big leaf N N Flexible Thomas and Williams (2014)

aDGVM Individual Y N Flexible Scheiter and Higgins (2009)

CABLE Big leaf N N Fixed Wang et al. (2011)

CLM4 Big leaf N N Fixed (modified) Oleson et al. (2010)

CLM5 Big leaf N Y Fixed (modified) Lawrence et al. (2018)

CLM‐FATES Cohort Y N Flexible Lawrence et al. (2018)

ED2 Cohort Y N Fixed Medvigy et al. (2009)

ED2‐hydro Cohort Y Y Fixed Xu et al. (2016)

Hybrid 3.0 Individual Y N Flexible Friend, Stevens, Knox, and Cannell 
(1997)

JeDi‐DVGM Big leaf Y N Fixed Pavlick, Drewry, Bohn, Reu, and 
Kleidon (2013)

LM3‐PPA Cohort Y N Fixed (modified) Weng et al. (2015)

LPJ‐DVGM Cohort Y N Flexible Sitch et al. (2003)

LPJ‐Magnani Hybrid Cohort Y N Flexible Magnani et al. (2000); Zaehle et al. 
(2006)

ORCHIDEE Big leaf Y N Flexible Friedlingstein, Joel, Field, and Fung 
(1999); Krinner et al. (2005)

SEIB‐DGVM Individual Y N Flexible Sato, Itoh, and Kohyama (2007)

TREES Individual N Y Flexible Mackay et al. (2015)
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more intensive than the big leaf approach, cohort‐based vegetation 
models are more skilled at capturing competition for light and vege‐
tation demographic processes. Furthermore, significant progress is 
being made toward incorporating cohort‐based vegetation models in 
the next generation of coupled climate–vegetation models used for 
global‐scale climate change projections (Fisher et al., 2018).

Despite the fact that allocation to leaves and other organs in 
the fixed allocation approach is broadly constrained by PFT‐specific 
fixed coefficients, the fixed coefficient representation of alloca‐
tion does allow for limited allometric perturbations in response to 
environment. The representation of phenological processes is one 
such example of environmental responsiveness. In most fixed al‐
location vegetation models, deciduous PFTs allocate extra carbon 
resources to leaves at the beginning of the growing season to meet 

some target leaf biomass, and cease allocating carbon to leaves at 
the end of the growing season (though exact allocation fractions are 
model specific). Phenological responsiveness has been incorporated 
for both temperate and drought deciduous ecosystems in a number 
of vegetation models. The representation of allocation to leaves in 
CLM4 and CLM5 is another such example, where the ratio of NPP 
going to leaves relative to stem is a function of previous year's NPP 
such that, as vegetation productivity (NPP) increases, more carbon 
is allocated to wood relative to leaves (Table 2). A third example of 
environmental responsiveness that is present in numerous fixed al‐
location models occurs when respiratory costs exceed plant carbon 
gain. For example, in the Ecosystem Demography (ED) model family, 
target leaf biomass is fixed based on PFT and dbh. But, when respira‐
tion and leaf and root turnover exceed photosynthetic carbon gains, 

TA B L E  2   Fixed allocation models

Model Detailed description of leaf allocation

CABLE Big leaf model with fixed allocation coefficients. Annual NPP productivity is determined from annual carbon assimilation cor‐
rected for respiratory losses. The growth/decay of biomass during the steady state part of the growing season is determined by 
partitioning of NPP between leaves, roots, and wood according to PFT‐specific fixed coefficients.

CLM4 Big leaf model with a modified version of fixed allocation coefficients. After accounting for the carbon costs of maintenance respiration, 
remaining photosynthetic carbon can be allocated to new growth. Allocation to new growth is calculated for all of the plant carbon 
and nitrogen state variables based on specified C:N ratios for each tissue type and allometric parameters that relate allocation be‐
tween various tissue types. Leaf carbon allocation is a dynamic function of NPP where the ratio of new stem to new leaf growth (a) is

where NPP an annual value summed over the previous year. This results in increased woody allocation in high NPP environments.

CLM5 Big leaf model with a modified version of fixed allocation coefficients. After accounting for the carbon costs of maintenance res‐
piration, remaining photosynthetic carbon can be allocated to new growth. Allocation to new growth is calculated for all of the 
plant carbon and nitrogen state variables based on specified C:N ratios for each tissue type and allometric parameters that relate 
allocation between various tissue types. Leaf carbon allocation is a dynamic function of NPP where the ratio of new stem to new 
leaf growth (a) is

where NPP is an annual value summed over the previous year. This results in increased woody allocation in high NPP 
environments.

ED2 Cohort‐based model. After accounting for respiration costs, remaining photosynthetic carbon can be allocated to new growth. 
During the steady‐state part of the growing season, allocation is determined by a functional relationship dependent on cohort 
dbh and PFT‐specific leaf–dbh biomass relationships

where bl is leaf biomass and a and b are fixed PFT‐specific constants.

ED2‐hydro Cohort‐based model. After accounting for respiration costs, remaining photosynthetic carbon can be allocated to new growth. 
During the steady‐state part of the growing season, allocation is determined by a functional relationship dependent on cohort 
dbh and PFT‐specific leaf–dbh biomass relationships

where bl is leaf biomass and a and b are fixed PFT‐specific constants.

JeDi‐DVGM Big leaf model where carbon allocation to each tissue pool is proportional to the size of the storage pool. Allocation is determined 
by fixed coefficients that are PFT‐specific, range from 0 to 1, and are mathematically constrained such that they sum to less than 
1. The allocation coefficient fraction is designed to represent functional trade‐offs in allocation: A higher allocation to fine roots 
enhances plant water uptake ability, but this comes at the expense of allocation to the above‐ground tissues, decreasing the abil‐
ity to capture light for photosynthesis.

LM3‐PPA Cohort‐based model where empirical allometric equations that are PFT‐specific and dependent on cohort dbh relate woody 
biomass (including coarse roots, bole, and branches), crown area, and stem diameter. Another set of fixed equations relate leaf 
mass to crown area and root mass to leaf mass. The target crown LAI is set by PFT‐specific equations and cohort light status (e.g., 
understory vs. overstory).

Abbreviations: NPP, net primary productivity; PFT, plant functional type.

a=
2.7

1+ exp (−0.004NPP−300)
−0.4,

a=
2.7

1+ exp (−0.004NPP−300)
−0.4,

bl=a ⋅dbhb ,

bl=a ⋅dbhb ,
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TA B L E  3   Flexible allocation models

Model Detailed allocation description

ACONITE Big leaf model. At each daily time step, instantaneous carbon (C) return is calculated (which accounts for gross photo‐
synthesis, growth respiration, and maintenance respiration of additional leaf allocation) to determine whether invest‐
ing further C and nitrogen (N) in foliage will result in a positive C net uptake (up to some maximum leaf carbon which 
is set on an annual timescale). If the maximum leaf allocation has been reached or N limits further leaf allocation, C 
is allocated to fill storage, grow wood, or increase fine roots. Further surplus C is allocated for N fixation. At the end 
of each annual cycle, integrated annual marginal C return is used to recompute maximum leaf C and N and maximum 
root C and N. The marginal changes to photosynthesis from added leaf C, added leaf N, and added leaf C and N 
together are iterated over using to determine the marginal carbon return.

aDGVM Individual‐based model. After covering respiratory costs, carbon is allocated to root, stem, or leaf in response to 
limiting resources (i.e., light‐limited trees preferentially allocate to stem, water‐limited trees preferentially allocate to 
roots, photosynthetically limited trees preferentially allocate to leaves). Thus, allocation is responsive to environmen‐
tal conditions according to the following relations:

 

where aR, aS, and aL describe carbon allocated to roots, stems, and leaves, respectively. a0R, a0S, and a0L describe the 
fractions of carbon allocated to roots, stems, and leaves when resources are not limiting. Qi ranges from 0 to 1 (where 
1 is no light limitation) and describes the light status of the plant and is based on the relative height of a given plant 
and its competitor. Gi is the weighted mean soil moisture index of all soil layers that a plant's roots have access to. Ci 
describes the deviance of leaf biomass from the fraction of leaf biomass in the nonlimiting case.

CLM‐FATES Cohort‐based model where photosynthetic carbon is allocated according to the following hierarchy: priority is given 
to maintenance respiration, followed by tissue maintenance and storage, then allocation to live biomass, and then to 
the expansion of structural and live biomass pools. The maximum carbon allocation to leaf biomass and other tissues 
is determined using allometric constants, a scheme based on the Ecosystem Demography model. However, target leaf 
biomass includes an optimization‐based “trimming” factor that allows for removal of leaves in negative carbon balance 
within the canopy due to light limitation. If the annual maintenance cost of the lowest leaf layer is less than the carbon 
gain, the canopy is trimmed by an increment which is applied up through the next calendar year.

Hybrid 3.0 Individual‐based model. If annual net carbon balance is positive (after allowing for carbon required to cover respiration 
and turnover costs), carbon is allocated to new growth and growth respiration. Allocation occurs assuming (a) a fixed 
allometric relationship between diameter at breast height and woody carbon mass; (b) that leaf area is linearly propor‐
tional to sapwood area at breast height; and (c) that there is a fixed ratio between leaf and fine root masses. Allocation 
coefficients are PFT specific. The carbon balance of the lowest leaf layer of each tree crown is calculated daily. If, at 
the end of each year, carbon balance is negative, the leaf area is reduced by the amount present in the bottom leaf 
layer. This results in the foliage area being optimized on an annual timestep based on carbon gain.

LPJ‐DVGM Cohort‐based model. After accounting for maintenance and growth respiration and annual reproductive costs, the 
remaining carbon is available for producing new tissue. Scaling rules constrain allocation among leaves, fine roots, 
and sapwood. First, leaf area is related to sapwood area through a constant. Second, rooting biomass is related to leaf 
biomass through a fixed coefficient and a water limitation factor that is an annual average value ranging between 0 
and 1 that is used in calculating this year's leaf to fine root mass ratio for the allocation routine. Thus, water‐limited 
environments require plants to allocate relatively more resources to fine root biomass compared to leaves. This 
results in increased respiration costs associated with roots and a loss of photosynthetic potential as the cost of having 
to acquire water and nutrients increases.

LPJ‐Magnani  
Hybrid

Cohort‐based model where allocation of carbon to conductive sapwood and absorbing roots is optimal with respect 
to achieving minimal whole‐plant leaf‐specific hydraulic resistance while supporting a maximum of transpiring leaf 
tissue. Increased allocation to fine roots with tree height decreases below‐ground plant hydraulic resistance which 
compensates for the increase in leaf‐specific resistance of the stem with tree height, maintaining a constant whole‐
plant leaf‐specific hydraulic conductance. Increasing respiratory costs relative to carbon gain to maintain whole‐plant 
leaf‐specific hydraulic conductance with increasing tree height reduces growth efficiency, resulting in a decline in 
productivity.

ORCHIDEE Big leaf model where carbon is allocated to root, stem, and leaf in response to limiting resources (i.e., water, light, 
nitrogen). No carbon is allocated to leaves when the leaf area index (LAI) is above a PFT‐specific annual maximum. 
Allocation is specified as:

where aR, aS, and aL describe carbon allocated to roots, stems, and leaves, respectively. a0R and a0S describe the fractions 
of carbon allocated to roots and stems when resources are not limiting. Both a0R and a0S are set to 0.3, giving a leaf 
allocation of 0.4 under conditions where resources are totally nonlimiting. Resource availabilities of Light (L), water (W), 
and nitrogen (N) range from 0.1 (severely limited) to 1.0 (readily available) where W is dependent on monthly soil water 
content, L is dependent on canopy LAI, and N is assumed to be a function of soil temperature and soil moisture.

aR=
1+ a0R−Gi

3+ a0R + a0S −Qi −Gi −Ci

, aS=
1+ a0S −Qi

3+ a0R + a0S −Qi −Gi −Ci

, aL=
1−Ci

3+ a0R + a0S −Qi −Gi −Ci

,

aR=3a0R
L

L+2min(W,N)
, as = 3a0S

min(W,N)

2L+min(W,N)
, aL=1 − aS − aR,

(Continues)
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trees cannot allocate to meet target leaf allometries due to environ‐
mental stress. Overall, these approaches have begun to incorporate 
simple environmental feedbacks on plant allometry. However, allo‐
cation schemes are generally limited to prescribed tissue ratios that 
are drawn from the allometric equation literature. Furthermore, allo‐
cation is largely rooted in carbon‐based allometries, and other eco‐
logically relevant metrics that have been shown to be important in 
an ecosystem context such as leaf mass per area (Duursma & Falster, 
2016; Falster, Duursma, & FitzJohn, 2018) are not often considered.

Because plant hydraulic processes are increasingly represented 
in both big leaf and cohort‐based vegetation models that use a fixed 
allocation approach (see below), it is important to understand how 
fixed allocation and sub‐hourly variations in water stress impact 
predictions of carbon and energy fluxes. The widespread fixed al‐
location approach of “growing the same tree everywhere” for a 
given model PFT is inconsistent with the huge forestry literature on 
the influence of site conditions on leaf allocation (Bond‐Lamberty  
et al., 2002; Fayolle et al., 2013; Jenkins et al., 2003; Ketterings  
et al., 2001; Ter‐Mikaelian & Korzukhin, 1997), making it important to 
consider the impacts on estimates for global terrestrial productivity.

4  | THE IMPORTANCE OF LE AF 
ALLOC ATION FOR THE PHYSIOLOGY OF 
VEGETATION WATER STRESS

Plant allocation to leaves, plant physiological traits, and local envi‐
ronmental conditions interact to affect water supply and demand 
and determine tree water status, gas exchange, and productivity. 
While water availability is set by climatic, hydrologic, and edaphic 
factors, tree water demand is determined in large part by plant mor‐
phology and leaf allocation. Water loss through AL must be matched 
by water flow through AS, giving the plant considerable agency over 
the flow of water through the soil–plant–atmosphere continuum 

purely based on its relative allocation to evaporative (AL) versus 
solely conductive (AS) tissue area. Because water stress is the result 
of unmet plant water demand, allocation to AL is a major seasonal to 
multi‐annual control over a plant's exposure to water stress under 
limiting water supply. Furthermore, water stress has important im‐
plications for plant productivity: If no other physiological changes 
occur, an over allocation of leaves, resulting in a large AL:AS, will 
cause stomatal closure to prevent excessive water loss, decrease 
intercellular CO2 (Ci), and decrease leaf‐level photosynthesis.

We illustrate the underlying plant physiological response to AL‐
driven changes in water demand with a fixed water supply using 
a simple tree model (the Hydraulic Optimization Theory for Tree 
and Ecosystem Resilience or HOTTER model). HOTTER uses a sin‐
gle resistor to represent whole‐plant hydraulic transport up to the 
substomatal cavity and a hydraulic optimization‐based stomatal 
conductance model (Trugman, Detto, et al., 2018; Wolf, Anderegg, 
& Pacala, 2016; Figure 2). While the model contains some necessary 
simplifications, it is broadly consistent with the Ohm's law analogy for 
hydraulic elements in series and the observed responses of gas ex‐
change to changes in leaf‐specific hydraulic conductance (Hubbard, 
Ryan, Stiller, & Sperry, 2001; Sperry et al., 2016; Sperry, 2000).

As illustrated by the HOTTER model, when a tree increases water 
demand via increases in AL, given fixed environmental and physiolog‐
ical conditions, the tree hydraulic conductance (K) per BA increases 
to a maximum as more leaves are added and the percent whole‐tree 
resistance in leaves declines. Consequently, AL increases faster than 
K, leading to a monotonic decline in tree hydraulic conductance per 
AL and hence transpiration per AL. Stomatal closure reduces tran‐
spiration per AL in step with the reduction in hydraulic conductance 
per AL, thus maintaining an approximate homeostasis in leaf water 
potential. The stomatal control on leaf pressure helps avoid the costs 
of physiological damage due to water stress (Anderegg et al., 2018; 
Wolf et al., 2016), but drives down leaf‐level photosynthesis by lim‐
iting Ci (Figure 2c). Additionally, at higher AL, self‐shading further 

TA B L E  3   (Continued)

Model Detailed allocation description

SEIB‐DGVM Individual‐based model where growth and allocation occur at three separate timescales. At the daily timescale, after 
respiratory costs are accounted for, leaf and fine root turnover is replenished according to fixed ratios between 
leaf and fine root biomass. Leaf biomass is constrained by two functional relationships based on fixed, PFT‐specific 
coefficients and carbon availability. Functional relationships include maximum crown surface area and maximum 
cross‐sectional area of sapwood. Trunk growth and expansion of crown area occur at the monthly timescale according 
to fixed constants and PFT‐specific allometric relationships. At the annual timescale, the height of the lowest branch 
increases as a result of self‐pruning of the bottom of the crown layer. During pruning, a maximum of 10 crown disks 
can be pruned at one time, each at a depth of 10 cm. Crown disks are purged based on the expected profit (carbon 
gain) of a particular crown disk.

TREES Individual‐based model. After accounting for respiration costs, remaining photosynthetic carbon can be allocated to 
new growth. Leaf turnover is dependent on hydraulic impairment of the lateral stem:

where L0 is initial leaf area index, M is unstressed leaf mortality rate, PL is lateral stem proportional loss of conduc‐
tivity, and cls and clrs are, respectively, the Weibull c parameters for the lateral stem and the lateral shallow root. 
Allocation to stem is fixed.

LM=

{

L0M, PL≥0.5∧cls≤ clrs

PLL0M, PL<0.5∧cls> clrs

,
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limits water and carbon fluxes. The reduction in photosynthesis per 
AL results in total tree photosynthesis (photosynthesis per leaf times 
AL) increasing less rapidly than the linear increase in the cost of leaf 
canopy construction and maintenance (respiration). Thus, there is 
an optimal AL:AS that maximizes the benefit of increased tree pho‐
tosynthesis relative to canopy construction and respiratory cost 
(Figure 2d,e). Critically, the optimal AL:AS is not fixed for a given set 
of plant hydraulic traits. Rather AL:AS depends on how local environ‐
mental conditions influence the cost–benefit ratio of growing AL: In 
drier climate conditions, there are lower carbon benefits, resulting 
in a lower optimal AL compared to wetter conditions where a higher 
AL is optimal (Westoby, Cornwell, & Falster, 2012). Given that trees 
within an individual species can grow along relatively broad environ‐
mental gradients, significant intraspecific allocational changes to AL 
can result depending on local environmental conditions (Anderegg & 
HilleRisLambers, 2016; DeLucia, Maherali, & Carey, 2000; Martinez‐
Vilalta et al., 2009; Mencuccini & Bonosi, 2001; Mencuccini & Grace, 
1994; Pinol & Sala, 2000; Rosas et al., 2019), and are likely a driver 
behind the large intraspecific variation in AL:BA observed across in 
the BAAD (Figure 1).

To demonstrate the impact of allocation to leaves on tree‐
level productivity, we used the HOTTER model with input at‐
mospheric vapor pressure deficit (VPD, a metric of atmospheric 
dryness), soil water content, and atmospheric CO2 concentration. 

We ran simulations varying AL:AS under two environmental re‐
gimes: a drier environment (VPD = 1,500 Pa and soil water potential 
(Ψsoil) = −0.6 MPa) and a wetter environment (VPD = 1,000 Pa and 
Ψsoil  =  −0.3 MPa). All other traits, tree size, and atmospheric CO2 
were kept constant. In the case where AL:AS determined based on 
the “optimal” AL:AS for the wetter environment (i.e., the AL:AS that 
maximized instantaneous tree carbon gain per respiratory and 
turnover costs given the wetter environment), but the tree was ex‐
periencing the drier environment, such as might be the case if the 
allocation functional relationship were derived from trees in a wet 
environment and applied to modeling tree allocation in a drier envi‐
ronment, the tree overallocated to AL by almost twofold relative to 
the optimum, resulting in a potential ~35% loss of plant carbon gain 
due to extra respiratory costs and stomatal closure (Figure 3).

Critically, tree‐level responses in productivity resulting from 
AL:AS and local environmental conditions significantly affect total 
ecosystem water fluxes and carbon gain. As an illustrative example 
of the consequences of fixed allometries in hydraulically enabled 
models for ecosystem‐level carbon predictions, we used site‐ 
specific allometry to constrain the leaf allocation strategy of aspen 
trees growing across a resource gradient between central Alaska and 
central Canada. We used the ED2 model (Trugman et al., 2016), a co‐
hort‐based vegetation model with an explicit representation of plant 
hydraulic processes designed to run at spatial scales ranging from 

F I G U R E  2   Leaf allocation and gas exchange jointly affect plant productivity. (a) Model scheme of plant hydraulic transport, illustrated 
per standard electrical resistance diagrams with conductivity (K = 1/resistance) and water potential of soil, stem, and leaf (Ψ) under normal 
conditions. (b) Schematic of possible plant physiological adjustments at the leaf‐ and stem‐level made in response to increased leaf water 
demand under water‐limited conditions. (c) Changes in Ci and stomatal conductance with increasing allocation to leaf area relative to 
water transport tissue (AL:AS). Note that these trends are for a tree modeled using a single resistor representing whole‐plant hydraulic 
transport up to the substomatal cavity and a hydraulic optimization‐based stomatal conductance model (Trugman, Detto, et al., 2018). 
Given multiple resistances specific to roots, stem, and leaves, trends are broadly similar but would exhibit a delay in the predicted declines 
in stomatal conductance (gs) and intercellular CO2 (Ci) with increased AL:AS (Hubbard et al., 2001; Sperry, 2000). (d) Whole‐tree gross 
primary productivity (GPP) and carbon costs associated with respiration and turnover with increased AL:AS. (e) Total whole plant carbon gain 
(photosynthesis minus respiration and turnover costs). Maxima indicates the maximum tree carbon gain given fixed environmental conditions

(a)

(c) (d) (e)

(b)

stem
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a flux tower footprint to regional scales (Medvigy, Wofsy, Munger, 
Hollinger, & Moorcroft, 2009; Medvigy & Moorcroft, 2012). We 
performed two separate simulations forced with identical climate 
over a 200 year spin‐up, but we varied the allometric relationship 
between dbh and leaf biomass according to two different allome‐
tries, one derived from trees sampled in a drier location in central 
Alaska (Yarie, Kane, & Hall, 2007) and one derived from trees sam‐
pled in a wetter location in central Canada (Bond‐Lamberty et al., 
2002). Depending on the allometric constraints used, ED2 predicted 

either rapid biomass accumulation within the first 50 years to a sta‐
ble forest BA (a metric of forest density) of ~27 cm2/m2, compared 
to a much slower biomass accumulation rate over the multi‐century 
period with a maximum accumulated BA of 20 cm2/m2 (~30% lower) 
at the end of the simulation (Figure 4). While particularly important 
in models that include plant hydraulics, this central role of allometric 
equations in influencing carbon pools and fluxes is visible in a wide 
range of models and ecosystems and has been identified as a major 
source of model uncertainty in response to elevated CO2 concentra‐
tions (De Kauwe et al., 2014; Walker et al., 2014).

5  | PL ANT HYDR AULIC S IN MECHANISTIC 
VEGETATION MODEL S

As illustrated by the HOTTER and ED2 vegetation models above, 
plant water transport links the carbon costs and benefits of plant 
allocation strategy. Thus, the representation of water transport 
in mechanistic models is the scaffolding upon which allometric 
schemes feedback to influence modeled plant water stress. Many 
large‐scale vegetation models represent the plant physiological 
response to supply‐ and demand‐driven water stress using two 
distinct pathways rather than explicitly representing plant hy‐
draulic transport along the soil–plant–atmosphere continuum (see, 
Sperry & Love, 2015; Fatichi, Pappas, & Ivanov, 2016; Mencuccini, 
Manzoni, & Christoffersen, 2018 for detailed reviews of the repre‐
sentation of plant water stress and water transport). Physiological 
responses to supply‐driven soil moisture stress are represented 
in many vegetation models using an empirical factor based on soil 
moisture and root biomass that downregulates either photosyn‐
thesis or stomatal conductance as soil water decreases below field 
capacity (Trugman, Medvigy, Mankin, & Anderegg, 2018). Demand‐
driven water stress responses are represented through an empirical 
equation that captures the observed relationships between stoma‐
tal conductance and environmental drivers, typically humidity or 
VPD, CO2 concentrations, and photosynthesis (Ball, Woodrow, & 
Berry, 1987; Leuning, 1995). Importantly, the treatment of supply‐ 
and demand‐driven limitations as separate pathways influencing 
water use is unlikely to capture the complex and nonlinear joint 
influence on stomatal conductance through leaf water potential 
(Sperry et al., 2017).

Vegetation models that do resolve the plant physiological re‐
sponse to water stress use several tissue‐level plant hydraulic traits 
of roots, stems, and leaves, including saturated xylem hydraulic 
conductivity and the water potential at 50% loss of conductiv‐
ity. With a resistor‐based representation of water transport and a 
connection between leaf water stress and stomatal conductance 
(Figure 2), hydraulically enabled vegetation models mechanistically 
link tissue‐level stresses to ecosystem‐level carbon and water fluxes 
(Christoffersen et al., 2016; Kennedy et al., 2019; Xu, Medvigy, 
Powers, Becknell, & Guan, 2016). Coupling of plant hydraulic trans‐
port to gas exchange at the stomata can be done either using an 
empirical function where stomatal conductance is parameterized as 

F I G U R E  4   Empirical representations of leaf allocation can 
result in substantial uncertainty in predictions for plant biomass 
accumulation depending on the local climatic conditions. Ecosystem 
Demography model version 2 (ED2)‐predicted aspen basal area 
accumulation over a 200 year spin‐up for trees with two different 
site‐specific leaf allometries, one derived from trees sampled 
in central Alaska (Yarie et al., 2007) and one derived from trees 
sampled in central Canada (Bond‐Lamberty et al., 2002), that 
constrain tree leaf carbon allocation strategy. This figure illustrates 
how model predictions can vary dramatically based on the 
allometric constraints used for simulations, highlighting the need 
for a more holistic understanding of leaf allocation

F I G U R E  3   Tree fitness quantified through whole‐tree carbon 
gain (photosynthesis minus respiration and turnover costs) for trees 
of the same size under wet (solid green line) and dry (solid tan line) 
conditions. Maxima indicate the maximum tree carbon gain given 
fixed environmental conditions and photosynthesis and hydraulic 
traits. Individual variation in carbon gain can occur through 
adjustment of allocation to leaf area relative to water transport 
tissue (AL:AS) to adapt to changes in water availability. Local optima 
for AL:AS for trees with identical traits but either in wetter or drier 
conditions are indicated with dashed vertical lines of the same 
color. Fitness curves were generated using the HOTTER model 
(Trugman, Detto, et al., 2018)
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a function of leaf water potential, in a manner similar to that of the 
empirical soil moisture stress function above, or via optimization ap‐
proaches. A recently proposed “carbon maximization” or “gain‐risk” 
optimization that explicitly balances the benefit of additional photo‐
synthesis against the risk of hydraulic dysfunction from falling water 
potentials (Eller et al., 2018; Sperry et al., 2017; Wolf et al., 2016) 
has yielded predictive improvements of water and carbon fluxes at 
leaf and whole‐tree scales, particularly during drought. The gain‐
risk approach, coupled with tissue‐level hydraulic traits to explicitly 
predict internal plant moisture stress (water potential), exceeds the 
accuracy of standard empirical models and other optimization ap‐
proaches (Anderegg et al., 2018; Venturas et al., 2018; Wang et al., 
2019), suggesting that optimization approaches based on hydraulic 
risk provide a rigorous predictive method for improving predictions 
of carbon, water, and energy fluxes.

Despite recent improvements, current state‐of‐the‐art represen‐
tations of plant hydraulic processes in vegetation models have yet 
to widely consider how the empirical constraint of fixed allometric 
traits further affects water relations and productivity. These allome‐
tric constraints on AL:AS are particularly important when considering 
that the new representation of plant water relations results in plant 
water stress varying on sub‐hourly scales with leaf water potential 
(Xu et al., 2016), rather than monthly timescales with soil moisture 
(Powell et al., 2013; Trugman, Medvigy, et al., 2018). Short temporal 
variations in water stress impact predictions of sub‐hourly carbon 
fluxes. Thus, because allocation to AL:AS is integral in determining 
leaf‐level gas exchange and Ci, a flexible allocation strategy to AL:AS 
that considers local water availability is of critical importance to cap‐
turing vegetation dynamics and terrestrial carbon, water, and energy 
fluxes.

6  | FLE XIBLE ALLOC ATION APPROACHES

A number of vegetation models of varying scales have made pro‐
gress toward allocation strategies that are flexible in response to 
resource limitation, some even in the context of plant hydraulics. 
In general, there are two main methodologies for representing flex‐
ible allocation in mechanistic models. One method adjusts allocation 
coefficients depending on the strongest resource limitation. The 
second type of approach, optimization‐based approaches, seeks to 
maximize some proxy of fitness, such as productivity (e.g., Figure 3) 
or reproductive success (Farrior, Dybzinski, Levine, & Pacala, 2013) 
given different key resource limitation axes. Within the two broad 
categories of flexible allocation approaches, individual vegetation 
model implementations vary significantly. In this section, we high‐
light a few key examples of flexible allocation from both resource‐
seeking and optimization‐based models along different limitation 
axes including light, water, and nutrients. We include further analy‐
ses of flexible allocation schemes in Table 3.

The Adaptive Dynamic Global Vegetation Model (aDGVM) is one 
example of a large‐scale vegetation model that represents allocation 
such that tissue biomass partitioning is responsive to environmental 

conditions. In aDGVM, light‐limited trees preferentially allocate to 
stem (King, 1994), water‐limited trees preferentially allocate to roots, 
and photosynthetically limited trees preferentially allocate to leaves 
(Table 3). Flexible allocation is achieved using empirical light and 
water limitation factors based on the relative height of a plant and 
its surrounding competitors and weighted soil moisture within the 
rooting zone, respectively (Scheiter & Higgins, 2009). Unstressed al‐
location (when light and water are not limiting) is defined using fixed 
coefficients dependent on PFT‐specific photosynthetic pathway 
(e.g., C3 or C4).

The Terrestrial Regional Ecosystem Exchange Simulator (TREES) 
is a stand‐scale vegetation model that integrates carbon uptake and 
allocation with plant hydraulic limitations (Table 3). TREES uses the 
soil–plant water transport model first described in Sperry, Adler, 
Campbell, and Comstock (1998) and explicitly couples plant hydrau‐
lics to photosynthesis and leaf carbon allocation through its leaf 
turnover function, which relates leaf mortality rate to lateral stem 
proportional loss of conductivity (Mackay et al., 2015). Given that a 
fixed amount of total available carbon is allocated to stem, and that 
leaf turnover rate varies depending on plant hydraulic stress, this 
allocation scheme decreases AL from a predetermined initial value 
that is dependent on site‐specific allometries in response to hydrau‐
lic impairment. Using a leaf turnover scheme that is responsive to 
hydraulic stress, TREES was able to accurately captured AL dynamics 
and species‐specific differences in semiarid piñon pine and juniper 
forests in the southwestern United States (Mackay et al., 2015).

Although computationally more intensive, optimization‐based 
approaches that account for both the morphological and physiolog‐
ical facets of plant above‐ and belowground allocation responses 
to resource stress provide a promising alternative to fixed allome‐
tric approaches because the optimization allows for allocation to 
be predicted from plant functional traits and environment (Sperry  
et al., 2012). In the context of light limitation, the CLM Functionally 
Assembled Terrestrial Ecosystem Simulator (CLM‐FATES) model uti‐
lizes an annualized optimization‐based “trimming” factor that allows 
for removal of leaves in negative carbon balance within the canopy 
if the annual maintenance cost of the lowest leaf layer is less than 
the carbon gain (Lawrence et al., 2018). This trimming approach is 
present in a number of vegetation models (Table 3).

In the context of water limitation, Magnani, Mencuccini, and 
Grace (2000) developed one of the first tree‐level models that in‐
tegrates plant hydraulics to test the hypothesis that age‐related 
declines in forest productivity are driven by allocational shifts to 
leaves, stem, and fine roots associated with tree height changes. In 
their model, Magnani et al. (2000) optimize allocation of carbon to 
conductive sapwood and absorbing root tissues to minimize whole‐
plant leaf‐specific hydraulic resistance while maximizing leaf tis‐
sue. Thus, to avoid negative water potentials as a tree grows taller, 
plant allocation shifts from leaves to transport tissues because re‐
sistance to water transport through the tree stem is proportional 
to tree height, so transport tissue must increase more rapidly than 
leaf tissue with height. This size‐dependent allocation scheme based 
on plant hydraulic constraints has been implemented in a version 
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of Lund–Potsdam–Jena (LPJ) vegetation model (Hickler, Prentice, 
Smith, Sykes, & Zaehle, 2006; Zaehle et al., 2006; Table 3). A number 
of other optimization studies have used the concept of ecohydrolog‐
ical equilibrium, where allocation to leaves and roots is assumed to 
be in equilibrium with water availability (Eagleson, 1982; Westoby 
et al., 2012). The ecohydrological equilibrium framework has suc‐
cessfully reproduced observed trends in AL and root distributions 
across environmental gradients (Cabon, Martínez‐Vilalta, Martínez 
de Aragón, Poyatos, & De Cáceres, 2018; Schymanski, Sivapalan, 
Roderick, Beringer, & Hutley, 2008; Yang, Medlyn, De Kauwe, & 
Duursma, 2018).

Furthermore, optimization approaches that account for mul‐
tiple resource limitations have been implemented, particularly 
in the context of nutrient and light limitation (Dewar, Franklin, 
Mäkelä, McMurtrie, & Valentine, 2009; Rastetter & Shaver, 1992). 
For example, in the simple vegetation model ACONITE (Analyze 
Carbon and Nitrogen Interactions in Terrestrial Ecosystems), 
Thomas and Williams (2014) account for the productivity trade‐
offs associated with allocating carbon and nitrogen to different 
tissues (Table 3). The ACONITE allocation scheme is executed 
through a relatively complex multi‐timescale optimization: At 
each daily time step, instantaneous carbon return is calculated 
to determine whether investing further carbon and nitrogen in 
foliage will result in a positive net carbon uptake (up to some max‐
imum leaf carbon which is set on an annual timescale). If the max‐
imum leaf allocation has been reached or nitrogen limits further 
leaf allocation, carbon is allocated to fill storage, grow wood, or 
increase fine roots. Further surplus carbon is allocated for nitro‐
gen fixation. At the end of each annual cycle, integrated annual 
marginal carbon return is used to recompute maximum leaf car‐
bon and nitrogen and maximum root carbon and nitrogen. Thus, 
at each timestep, ACONITE computes the marginal changes to 
photosynthesis from added leaf carbon, added leaf nitrogen, and 
added leaf carbon and nitrogen together, to determine an appro‐
priate allocation strategy.

7  | FRONTIERS IN ALLOC ATION 
PREDIC TION

In this section, we expand the understanding of allocation drawn 
from the vegetation hydraulic framework to comment broadly on 
the global optimization problem of allocation to plant tissues in the 
presence of multiple resource constraints. Specifically, we highlight 
current questions arising from flexible allocation schemes, including 
limitations of both resource‐seeking approaches and optimization‐ 
based approaches. Concomitantly, we suggest several ways forward to 
improve the representation of allocation in vegetation models.

Current resource‐seeking implementations of flexible allocation 
still face challenges associated with (a) quantifying the degree and 
costs of light, water, and nutrient limitation; and (b) uncertainty as‐
sociated with physiological parameters such as root hydraulic resis‐
tance, which can be treated as model calibration factors rather than an 

observationally constrained biological traits. As a result, a number of 
vegetation models with resource‐seeking allocation effectively trade 
empirical allometric allocation factors (based on site‐specific, but 
field‐measured allometric relationships) for empirical cost factors that 
may be loosely rooted in limitation mechanisms, such as soil water/ 
nutrient availability or relative tree height of competitors (Table 3). 
Such trade‐offs should be undertaken with caution because the em‐
pirical cost factors are difficult to validate using field measurements 
and are unlikely to capture any nonlinear changes in allocation re‐
sponses to resource scarcity, as might be expected in out of sample 
environmental conditions. Furthermore, most resource limitation 
schemes still rely on fixed coefficients to define allocational strate‐
gies under unstressed conditions (Krinner et al., 2005; Lawrence et al., 
2018; Mackay et al., 2015; Scheiter & Higgins, 2009).

Key challenges to address in advancing flexible allocational 
schemes in vegetation models will be to: (a) limit additional free pa‐
rameters; (b) tie the mechanisms underlying flexible allocation to 
known aspects of plant physiology such as plant functional traits; 
(c) assess whether any increases in model complexity toward a more 
physiological accurate representation of biomass allocation are jus‐
tified based on model performance. In particular, the universal prob‐
lem of equifinality (many parameter choices yielding similar model 
behavior) in vegetation models with many unconstrained or poorly 
constrained parameters emphasizes the need to implement parsi‐
monious allocation schemes driven by parameters that can be con‐
strained by observations (Tang & Zhuang, 2008). Otherwise, flexible 
allocation schemes may fit training data well, yet not beat simplistic 
but empirically constrained fixed allocation schemes when consider‐
ing multiple measures of model predictive skill.

Recent advances in the field of plant hydraulics provide several 
examples of methods to mechanistically quantify costs of scarce re‐
source limitation that are informative to the flexible allocation prob‐
lem. For example, Mackay et al. (2015) accelerated leaf shedding in 
response to water limitation as a function of lateral stem proportional 
loss of conductivity and Sperry et al. (2017) defined a hydraulic dam‐
age risk function based on the fractional loss of plant hydraulic con‐
ductance. Although these approaches are not fully mechanistic, they 
offer potential improvements that connect hydraulic mechanisms to 
allocation and damage costs experienced by plants. Additionally, the 
cost functions associated with hydraulic conductivity or conductance 
have performed well when tested against diverse allocational and 
physiological observational datasets (Eller et al., 2018; Mackay et al., 
2015; Sperry et al., 2017; Venturas et al., 2018).

Optimality approaches show significant promise for predicting the 
interaction between plant biophysics and environment and have been 
implemented in the context of plant hydraulics, as illustrated by the 
HOTTER model example (Trugman et al., 2019), and for multiple resource 
limitations (i.e., Dybzinski, Farrior, & Pacala, 2015; Farrior et al., 2013; 
Rastetter & Shaver, 1992; Thomas & Williams, 2014) in simple models. 
However, the calculation of the marginal costs and benefits associated 
with allocation trade‐offs can be extremely computationally expensive. 
Furthermore, the implementation of optimized allocation brings up a 
number of plant physiological questions that are currently unknown 
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(Dewar et al., 2009). Particularly, how rapidly can plants adjust allocation? 
How does environmental variability factor into plant allocation strat‐
egy? How does competition impact allocation strategy (i.e., Dybzinski  
et al., 2015; Falster & Westoby, 2003; Farrior et al., 2013)? How do 
plants reconcile short‐term and long‐term trade‐offs such as sacrificing 
height growth, which increases short‐term carbon gain but ultimately 
leads to a long‐term competitive disadvantage (Buckley & Roberts, 
2006; King, 1981)?

Given the significant advantages of optimality principles, but 
substantial computational trade‐offs, hybrid approaches that uti‐
lize carbon balance optimization techniques to define resource cost 
functions associated with allocation to different tissues under vary‐
ing resource constraints could prove to be computationally more 
feasible and avoid drawbacks associated with determining the ap‐
propriate optimization timescale. For example, allocation routines 
could calculate marginal changes in plant fitness (such as carbon 
gain) in response to increased allocation to leaf, root, and stem tissue 
given a fixed resource availability, similar to the size‐based approach 
(Zaehle et al., 2006), as illustrated in Figure 5.

8  | CONCLUSIONS

Overall, we now have the tools to tackle allocation broadly in 
the presence of multiple limiting resources. In particular, co‐
hort‐based vegetation models allow us to tackle the impacts 
of light limitation on allocation (Fisher et al., 2018; Lawrence  

et al., 2018). Vegetation models that incorporate plant hydraulics 
(Christoffersen et al., 2016; Kennedy et al., 2019; Xu et al., 2016) 
give us an increased ability to understand how water limitation 
impacts allocation. Models that include microbe‐mediated biogeo‐
chemistry and competition for nitrogen and phosphorus allow us 
to predict nutrient limitations on allocation and growth (Medvigy 
et al., 2019). Although these connections are not yet fully realized, 
they represent a promising area of future development.
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F I G U R E  5   Schematic of expected allocational responses to various resource limitations and impacts of allocation strategy on marginal 
plant fitness increase. (a) Expected changes in root, leaf, and stem allocation in response to increased competition for light, decreased soil 
water availability, and decreased nutrient availability. Pluses combined with solid lines indicate increased carbon allocation to a given tissue 
and minuses combined with dashed lines indicate decreased allocation. (b) Schematic of fitness as a function of relative carbon allocation 
(in percent) to leaf, root, and stem tissue including a hypothetical optimum for a given set of local environmental conditions. Solid arrows 
indicate directional shifts in relative allocation in response to increased water availability, decreased nutrient availability, and decreased light 
availability

--L
ig
ht

++Water--Nut
rient

(a) (b)

https://orcid.org/0000-0002-7903-9711
https://orcid.org/0000-0002-7903-9711
https://orcid.org/0000-0001-6551-3331
https://orcid.org/0000-0001-6551-3331


12  |     TRUGMAN et al.

R E FE R E N C E S

Anderegg, L. D. L., & HilleRisLambers, J. (2016). Drought stress limits 
the geographic ranges of two tree species via different physiological 
mechanisms. Global Change Biology, 22(3), 1029–1045. https​://doi.
org/10.1111/gcb.13148​

Anderegg, W. R. L., Wolf, A., Arango‐Velez, A., Choat, B., Chmura, D. 
J., Jansen, S., … Pacala, S. (2018). Woody plants optimise stomatal 
behaviour relative to hydraulic risk. Ecology Letters, 21(7), 968–977. 
https​://doi.org/10.1111/ele.12962​

Ball, J. T., Woodrow, I. E., & Berry, J. A. (1987). A model predicting sto‐
matal conductance and its contribution to the control of photosyn‐
thesis under different environmental conditions. In J. Biggins (Ed.), 
Progress in photosynthesis (pp. 221–224). Dordrecht, the Netherlands: 
Springer. https​://doi.org/10.1007/978-94-017-0519-6_48

Bartlett, M. K., Scoffoni, C., & Sack, L. (2012). The determinants of leaf 
turgor loss point and prediction of drought tolerance of species and 
biomes: A global meta‐analysis. Ecology Letters, 15(5), 393–405. 
https​://doi.org/10.1111/j.1461-0248.2012.01751.x

Baskerville, G. L. (1972). New titin isoforms in skeletal muscles of mam‐
mals. Canadian Journal of Forestry, 2(49). https​://doi.org/10.1023/
B:DOBI.00000​25559.14249.43

Bonan, G. (2008). Forests and climate change: Forcings, feedbacks, and 
the climate benefits of forests. Science, 320, 1444–1449. https​://doi.
org/10.1126/scien​ce.1155121

Bond‐Lamberty, B., Wang, C., & Gower, S. T. (2002). Aboveground and 
belowground biomass and sapwood area allometric equations for six 
boreal tree species of northern Manitoba. Canadian Journal of Forest 
Research, 32(8), 1441–1450. https​://doi.org/10.1139/x02-063

Buckley, T. N., & Roberts, D. W. (2006). DESPOT, a process‐based tree 
growth model that allocates carbon to maximize carbon gain. Tree 
Physiology, 26(2), 129–144. https​://doi.org/10.1093/treep​hys/26.2.129

Cabon, A., Martínez‐Vilalta, J., Martínez de Aragón, J., Poyatos, R., & 
De Cáceres, M. (2018). Applying the eco‐hydrological equilibrium 
hypothesis to model root distribution in water‐limited forests. 
Ecohydrology, 11(7), 1–16. https​://doi.org/10.1002/eco.2015

Chave, J., Condit, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). 
Error propagation and sealing for tropical forest biomass estimates. 
Philosophical Transactions of the Royal Society B: Biological Sciences, 
359(1443), 409–420. https​://doi.org/10.1098/rstb.2003.1425

Chave, J., Réjou‐Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., 
Delitti, W. B. C., … Vieilledent, G. (2014). Improved allometric models 
to estimate the aboveground biomass of tropical trees. Global Change 
Biology, 20(10), 3177–3190. https​://doi.org/10.1111/gcb.12629​

Choat, B., Jansen, S., Brodribb, T. J., Cochard, H., Delzon, S., Bhaskar, 
R., … Zanne, A. E. (2012). Global convergence in the vulnerabil‐
ity of forests to drought. Nature, 491(7426), 752–755. https​://doi.
org/10.1038/natur​e11688

Christoffersen, B. O., Gloor, M., Fauset, S., Fyllas, N. M., Galbraith, D. 
R., Baker, T. R., … Meir, P. (2016). Linking hydraulic traits to tropical 
forest function in a size‐structured and trait‐driven model (TFS vol 
1‐Hydro). Geoscientific Model Development, 9(11), 4227–4255. https​
://doi.org/10.5194/gmd-9-4227-2016

De Kauwe, M. G., Medlyn, B. E., Zaehle, S., Walker, A. P., Dietze, M. 
C., Wang, Y. P., … Norby, R. J. (2014). Where does the carbon go? 
A model‐data intercomparison of vegetation carbon allocation and 
turnover processes at two temperate forest free‐air CO2 enrichment 
sites. New Phytologist, 203(3), 883–899. https​://doi.org/10.1111/
nph.12847​

DeLucia, E. H., Maherali, H., & Carey, E. V. (2000). Climate‐driven changes 
in biomass allocation in pines. Global Change Biology, 6(5), 587–593. 
https​://doi.org/10.1046/j.1365-2486.2000.00338.x

Dewar, R. C., Franklin, O., Mäkelä, A., McMurtrie, R. E., & Valentine, H. T. 
(2009). Optimal function explains forest responses to global change. 
BioScience, 59(2), 127–139. https​://doi.org/10.1525/bio.2009.59.2.6

Duursma, R. A., & Falster, D. S. (2016). Leaf mass per area, not total leaf 
area, drives differences in above‐ground biomass distribution among 
woody plant functional types. The New Phytologist, 212(2), 368–376. 
https​://doi.org/10.1111/nph.14033​

Dybzinski, R., Farrior, C. E., & Pacala, S. W. (2015). Increased forest car‐
bon storage with increased atmospheric CO2 despite nitrogen limita‐
tion: A game‐theoretic allocation model for trees in competition for 
nitrogen and light. Global Change Biology, 21(3), 1182–1196. https​://
doi.org/10.1111/gcb.12783​

Eagleson, P. S. (1982). Ecological optimality in water‐limited natural soil‐veg‐
etation systems: 1. Theory and hypothesis. Water Resources Research, 
18(2), 325–340. https​://doi.org/10.1029/WR018​i002p​00325​

Eller, C. B., Rowland, L., Oliveira, R. S., Bittencourt, P. R. L., Barros, F. V., da 
Costa, A. C. L., … Cox, P. (2018). Modelling tropical forest responses 
to drought and El Niño with a stomatal optimization model based 
on xylem hydraulics. Philosophical Transactions of the Royal Society B: 
Biological Sciences, 373(1760), 20170315. https​://doi.org/10.1098/
rstb.2017.0315

Falster, D. S., Duursma, R. A., & FitzJohn, R. G. (2018). How functional 
traits influence plant growth and shade tolerance across the life 
cycle. Proceedings of the National Academy of Sciences of the United 
States of America, 115(29), E6789–E6798. https​://doi.org/10.1073/
pnas.17140​44115​

Falster, D. S., Duursma, R. A., Ishihara, M. I., Barneche, D. R., FitzJohn, 
R. G., Vårhammar, A., … York, R. A. (2015). BAAD: A biomass and 
allometry database for woody plants. Ecology, 96(5), 1445. https​://
doi.org/10.1890/14-1889.1

Falster, D. S., & Westoby, M. (2003). Plant height and evolutionary 
games. Trends in Ecology & Evolution, 18(7), 337–343. https​://doi.
org/10.1016/S0169-5347(03)00061-2

Farrior, C. E., Dybzinski, R., Levine, S. A., & Pacala, S. W. (2013). 
Competition for water and light in closed‐canopy forests: A 
tractable model of carbon allocation with implications for car‐
bon sinks. The American Naturalist, 181(3), 314–330. https​://doi.
org/10.1086/669153

Fatichi, S., Pappas, C., & Ivanov, V. Y. (2016). Modeling plant‐water in‐
teractions: An ecohydrological overview from the cell to the global 
scale. Wiley Interdisciplinary Reviews: Water, 3(3), 327–368. https​://
doi.org/10.1002/wat2.1125

Fayolle, A., Doucet, J. L., Gillet, J. F., Bourland, N., & Lejeune, P. (2013). 
Tree allometry in Central Africa: Testing the validity of pantropical 
multi‐species allometric equations for estimating biomass and car‐
bon stocks. Forest Ecology and Management, 305, 29–37. https​://doi.
org/10.1016/j.foreco.2013.05.036

Fisher, R. A., Koven, C. D., Anderegg, W. R. L., Christoffersen, B. O., 
Dietze, M. C., Farrior, C. E., … Moorcroft, P. R. (2018). Vegetation 
demographics in Earth System Models: A review of progress and pri‐
orities. Global Change Biology, 24(1), 35–54. https​://doi.org/10.1111/
gcb.13910​

Franklin, O., Johansson, J., Dewar, R. C., Dieckmann, U., McMurtrie, R. E., 
Brännström, A. K., & Dybzinski, R. (2012). Modeling carbon alloca‐
tion in trees: A search for principles. Tree Physiology, 32(6), 648–666. 
https​://doi.org/10.1093/treep​hys/tpr138

Friedlingstein, P., Joel, G., Field, C. B., & Fung, I. Y. (1999). Toward 
an allocation scheme for global terrestrial carbon models. Global 
Change Biology, 5, 755–770. https​://doi.org/10.1046/j.1365-2486. 
1999.00269.x

Friend, A. D., Stevens, A. K., Knox, R. G., & Cannell, M. G. R. (1997). A 
process‐based, terrestrial biosphere model of ecosystem dynamics 
(Hybrid v3.0). Ecological Modelling, 95(2–3), 249–287. https​://doi.
org/10.1016/S0304-3800(96)00034-8

Hickler, T., Prentice, I. C., Smith, B., Sykes, M. T., & Zaehle, S. (2006). 
Implementing plant hydraulic architecture within the LPJ Dynamic 
Global Vegetation Model. Global Ecology and Biogeography, 15, 567–
577. https​://doi.org/10.1111/j.1466-822X.2006.00254.x

https://doi.org/10.1111/gcb.13148
https://doi.org/10.1111/gcb.13148
https://doi.org/10.1111/ele.12962
https://doi.org/10.1007/978-94-017-0519-6_48
https://doi.org/10.1111/j.1461-0248.2012.01751.x
https://doi.org/10.1023/B:DOBI.0000025559.14249.43
https://doi.org/10.1023/B:DOBI.0000025559.14249.43
https://doi.org/10.1126/science.1155121
https://doi.org/10.1126/science.1155121
https://doi.org/10.1139/x02-063
https://doi.org/10.1093/treephys/26.2.129
https://doi.org/10.1002/eco.2015
https://doi.org/10.1098/rstb.2003.1425
https://doi.org/10.1111/gcb.12629
https://doi.org/10.1038/nature11688
https://doi.org/10.1038/nature11688
https://doi.org/10.5194/gmd-9-4227-2016
https://doi.org/10.5194/gmd-9-4227-2016
https://doi.org/10.1111/nph.12847
https://doi.org/10.1111/nph.12847
https://doi.org/10.1046/j.1365-2486.2000.00338.x
https://doi.org/10.1525/bio.2009.59.2.6
https://doi.org/10.1111/nph.14033
https://doi.org/10.1111/gcb.12783
https://doi.org/10.1111/gcb.12783
https://doi.org/10.1029/WR018i002p00325
https://doi.org/10.1098/rstb.2017.0315
https://doi.org/10.1098/rstb.2017.0315
https://doi.org/10.1073/pnas.1714044115
https://doi.org/10.1073/pnas.1714044115
https://doi.org/10.1890/14-1889.1
https://doi.org/10.1890/14-1889.1
https://doi.org/10.1016/S0169-5347(03)00061-2
https://doi.org/10.1016/S0169-5347(03)00061-2
https://doi.org/10.1086/669153
https://doi.org/10.1086/669153
https://doi.org/10.1002/wat2.1125
https://doi.org/10.1002/wat2.1125
https://doi.org/10.1016/j.foreco.2013.05.036
https://doi.org/10.1016/j.foreco.2013.05.036
https://doi.org/10.1111/gcb.13910
https://doi.org/10.1111/gcb.13910
https://doi.org/10.1093/treephys/tpr138
https://doi.org/10.1046/j.1365-2486.1999.00269.x
https://doi.org/10.1046/j.1365-2486.1999.00269.x
https://doi.org/10.1016/S0304-3800(96)00034-8
https://doi.org/10.1016/S0304-3800(96)00034-8
https://doi.org/10.1111/j.1466-822X.2006.00254.x


     |  13TRUGMAN et al.

Hubbard, R. M., Ryan, M. G., Stiller, V., & Sperry, J. S. (2001). Stomatal 
conductance and photosynthesis vary linearly with plant hydraulic 
conductance in ponderosa pine. Plant, Cell and Environment, 24, 113–
121. https​://doi.org/10.1046/j.1365-3040.2001.00660.x

Jenkins, J. C., Chojnacky, D. C., Heath, L. S., & Birdsey, R. A. (2003). 
National‐scale biomass estimators for United States tree species. 
Forest Science, 49(1), 12–35. https​://doi.org/10.2737/NE-GTR-310

Kennedy, D., Swenson, S., Oleson, K. W., Lawrence, D. M., Fisher, 
R. A., da Costa, A. C. L., & Gentine, P. (2019). Implementing plant 
hydraulics in the Community Land Model, version 5. Journal of 
Advances in Modeling Earth Systems, 1–29, 485–513. https​://doi.
org/10.1029/2018m​s001500

Ketterings, Q. M., Coe, R., Van Noordwijk, M., Ambagau, Y., & Palm, C. 
A. (2001). Reducing uncertain in the use of allometric biomass equa‐
tion for predicting above‐ground tree biomass in mixed secondary 
forests. Forest Ecology and Management, 146, 199–209. https​://doi.
org/10.1016/s0378-1127(00)00460-6

King, D. (1981). Tree dimensions: Maximizing the rate of height growth 
in dense stands. Oecologia, 51(3), 351–356. https​://doi.org/10.1007/
BF005​40905​

King, D. A. (1994). Influence of light level on the growth and morphology 
of saplings in a Panamian forest. American Journal of Botany, 81(8), 
948–957. https​://doi.org/10.1002/j.1537-2197.1994.tb155​81.x

Krinner, G., Viovy, N., de Noblet‐Ducoudré, N., Ogée, J., Polcher, J., 
Friedlingstein, P., … Prentice, I. C. (2005). A dynamic global veg‐
etation model for studies of the coupled atmosphere‐biosphere 
system. Global Biogeochemical Cycles, 19(1), 1–33. https​://doi.
org/10.1029/2003g​b002199

Lawrence, D., Fisher, R., Koven, C., Oleson, K., Swenson, S., & Vertenstein, 
M. (2018). CLM5 technical note. Boulder, CO: The National Center for 
Atmospheric Research.

Leuning, R. (1995). A critical appraisal of combined stomatal‐photosyn‐
thesis model for C3 plants. Plant, Cell and Environment, 18, 339–355. 
https​://doi.org/10.1111/j.1365-3040.1995.tb003​70.x

Lines, E. R., Zavala, M. A., Purves, D. W., & Coomes, D. A. (2012). Predictable 
changes in aboveground allometry of trees along gradients of tempera‐
ture, aridity and competition. Global Ecology and Biogeography, 21(10), 
1017–1028. https​://doi.org/10.1111/j.1466-8238.2011.00746.x

Mackay, D. S., Roberts, D. E., Ewers, B. E., Sperry, J. S., McDowell, N. 
G., & Pockman, W. T. (2015). Interdependence of chronic hydraulic 
dysfunction and canopy processes can improve integrated models of 
tree response to drought. Water Resources Research, 51, 6156–6176. 
https​://doi.org/10.1002/2015W​R017244

Magnani, F., Mencuccini, M., & Grace, J. (2000). Age‐related decline in 
stand productivity: The role of structural acclimation under hydraulic 
constraints. Plant, Cell and Environment, 23(3), 251–263. https​://doi.
org/10.1046/j.1365-3040.2000.00537.x

Martínez‐Vilalta, J., Cochard, H., Mencuccini, M., Sterck, F., Herrero, 
A., Korhonen, J. F. J., … Zweifel, R. (2009). Hydraulic adjustment of 
Scots pine across Europe. New Phytologist, 184, 353–364. https​://doi.
org/10.1111/j.1469-8137.2009.02954.x

Medvigy, D., & Moorcroft, P. R. (2012). Predicting ecosystem dynamics 
at regional scales: An evaluation of a terrestrial biosphere model for 
the forests of northeastern North America. Philosophical Transactions 
of the Royal Society of London. Series B, Biological Sciences, 367(1586), 
222–235. https​://doi.org/10.1098/rstb.2011.0253

Medvigy, D., Wang, G., Zhu, Q., Riley, W. J., Trierweiler, A. M., Waring, B. 
G., … Powers, J. S. (2019). Observed variation in soil properties can 
drive large variation in modeled forest functioning and composition 
during tropical forest secondary succession. New Phytologist, 223, 
1820–1833. https​://doi.org/10.1111/nph.15848​

Medvigy, D., Wofsy, S. C., Munger, J. W., Hollinger, D. Y., & Moorcroft, P. R. 
(2009). Mechanistic scaling of ecosystem function and dynamics in space 
and time: Ecosystem demography model version 2. Journal of Geophysical 
Research, 114(G1), G01002. https​://doi.org/10.1029/2008J​G000812

Mencuccini, M., & Bonosi, L. (2001). Leaf/sapwood area ratios in Scots 
pine show acclimation across Europe. Canadian Journal of Forest 
Research, 31(3), 442–456. https​://doi.org/10.1139/x00-173

Mencuccini, M., & Grace, J. (1994). Climate influences the leaf area/
sapwood area in Scots pine. Tree Physiology, 15(2), 1–10. https​://doi.
org/10.1093/treep​hys/15.1.1

Mencuccini, M., Manzoni, S., & Christoffersen, B. O. (2018). Modelling 
water fluxes in plants: From tissues to biosphere and back. New 
Phytologist, 1991, 1–24. https​://doi.org/10.1111/nph.15681​

Oleson, K. W., Lawrence, D. M., Bonan, G. B., Flanner, M. G., Kluzek, 
E., Lawrence, P. J., … Thornton, P. E. (2010). Technical description of 
version 4.0 of the Community Land Model (CLM). NCAR technical 
notes TN‐478, pp. 1–257.

Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., … 
Hayes, D. (2011). A large and persistent carbon sink in the world's for‐
ests. Science, 333, 988–993. https​://doi.org/10.1126/scien​ce.1201609

Pavlick, R., Drewry, D. T., Bohn, K., Reu, B., & Kleidon, A. (2013). The 
Jena Diversity‐Dynamic Global Vegetation Model (JeDi‐DGVM): A 
diverse approach to representing terrestrial biogeography and bio‐
geochemistry based on plant functional trade‐offs. Biogeosciences, 
10(6), 4137–4177. https​://doi.org/10.5194/bg-10-4137-2013

Pinol, J., & Sala, A. (2000). Ecological implications of xylem cavitation for 
several Pinaceae in the Pacific Northern USA. Functional Ecology, 14(5), 
538–545. https​://doi.org/10.1046/j.1365-2435.2000.t01-1-00451.x

Ploton, P., Barbier, N., Takoudjou Momo, S., Réjou‐Méchain, M., Boyemba 
Bosela, F., Chuyong, G., … Pélissier, R. (2016). Closing a gap in tropical 
forest biomass estimation: Taking crown mass variation into account 
in pantropical allometries. Biogeosciences, 13(5), 1571–1585. https​://
doi.org/10.5194/bg-13-1571-2016

Powell, T. L., Galbraith, D. R., Christoffersen, B. O., Harper, A., Imbuzeiro, 
H. M. A., Rowland, L., … Moorcroft, P. R. (2013). Confronting model 
predictions of carbon fluxes with measurements of Amazon forests 
subjected to experimental drought. New Phytologist, 200(2), 350–
365. https​://doi.org/10.1111/nph.12390​

Rastetter, E. B., & Shaver, G. R. (1992). A model of multiple‐element lim‐
itation for acclimating vegetation. Ecology, 73(4), 1157–1174. https​://
doi.org/10.2307/1940666

Rosas, T., Mencuccini, M., Barba, J., Cochard, H., Saura‐Mas, S., & 
Martínez‐Vilalta, J. (2019). Adjustments and coordination of hy‐
draulic, leaf and stem traits along a water availability gradient. New 
Phytologist, 223, 632–646. https​://doi.org/10.1111/nph.15684​

Sato, H., Itoh, A., & Kohyama, T. (2007). SEIB–DGVM: A new Dynamic 
Global Vegetation Model using a spatially explicit individual‐based 
approach. Ecological Modelling, 200(3–4), 279–307. https​://doi.
org/10.1016/j.ecolm​odel.2006.09.006

Scheiter, S., & Higgins, S. I. (2009). Impacts of climate change on the 
vegetation of Africa: An adaptive dynamic vegetation modelling 
approach. Global Change Biology, 15(9), 2224–2246. https​://doi.
org/10.1111/j.1365-2486.2008.01838.x

Schymanski, S. J., Sivapalan, M., Roderick, M. L., Beringer, J., & Hutley, 
L. B. (2008). An optimality‐based model of the coupled soil moisture 
and root dynamics. Hydrology and Earth System Sciences, 12, 913–
932. https​://doi.org/10.5194/hess-12-913-2008

Sitch, S., Smith, B., Prentice, I. C., Arneth, A., Bondeau, A., Cramer, W., 
… Venevsky, S. (2003). Evaluation of ecosystem dynamics, plant 
geography and terrestrial carbon cycling in the LPJ dynamic global 
vegetation model. Global Change Biology, 9(2), 161–185. https​://doi.
org/10.1046/j.1365-2486.2003.00569.x

Sperry, J. S. (2000). Hydraulic constraints on plant gas exchange. 
Agricultural and Forest Meteorology, 104(1), 13–23. https​://doi.
org/10.1016/S0168-1923(00)00144-1

Sperry, J. S., Adler, F. R., Campbell, G. S., & Comstock, J. P. (1998). 
Limitation of plant water use by rhizosphere and xylem conductance: 
Results from a model. Plant, Cell and Environment, 21, 347–359. https​
://doi.org/10.1046/j.1365-3040.1998.00287.x

https://doi.org/10.1046/j.1365-3040.2001.00660.x
https://doi.org/10.2737/NE-GTR-310
https://doi.org/10.1029/2018ms001500
https://doi.org/10.1029/2018ms001500
https://doi.org/10.1016/s0378-1127(00)00460-6
https://doi.org/10.1016/s0378-1127(00)00460-6
https://doi.org/10.1007/BF00540905
https://doi.org/10.1007/BF00540905
https://doi.org/10.1002/j.1537-2197.1994.tb15581.x
https://doi.org/10.1029/2003gb002199
https://doi.org/10.1029/2003gb002199
https://doi.org/10.1111/j.1365-3040.1995.tb00370.x
https://doi.org/10.1111/j.1466-8238.2011.00746.x
https://doi.org/10.1002/2015WR017244
https://doi.org/10.1046/j.1365-3040.2000.00537.x
https://doi.org/10.1046/j.1365-3040.2000.00537.x
https://doi.org/10.1111/j.1469-8137.2009.02954.x
https://doi.org/10.1111/j.1469-8137.2009.02954.x
https://doi.org/10.1098/rstb.2011.0253
https://doi.org/10.1111/nph.15848
https://doi.org/10.1029/2008JG000812
https://doi.org/10.1139/x00-173
https://doi.org/10.1093/treephys/15.1.1
https://doi.org/10.1093/treephys/15.1.1
https://doi.org/10.1111/nph.15681
https://doi.org/10.1126/science.1201609
https://doi.org/10.5194/bg-10-4137-2013
https://doi.org/10.1046/j.1365-2435.2000.t01-1-00451.x
https://doi.org/10.5194/bg-13-1571-2016
https://doi.org/10.5194/bg-13-1571-2016
https://doi.org/10.1111/nph.12390
https://doi.org/10.2307/1940666
https://doi.org/10.2307/1940666
https://doi.org/10.1111/nph.15684
https://doi.org/10.1016/j.ecolmodel.2006.09.006
https://doi.org/10.1016/j.ecolmodel.2006.09.006
https://doi.org/10.1111/j.1365-2486.2008.01838.x
https://doi.org/10.1111/j.1365-2486.2008.01838.x
https://doi.org/10.5194/hess-12-913-2008
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1046/j.1365-2486.2003.00569.x
https://doi.org/10.1016/S0168-1923(00)00144-1
https://doi.org/10.1016/S0168-1923(00)00144-1
https://doi.org/10.1046/j.1365-3040.1998.00287.x
https://doi.org/10.1046/j.1365-3040.1998.00287.x


14  |     TRUGMAN et al.

Sperry, J. S., & Love, D. M. (2015). What plant hydraulics can tell us about 
responses to climate‐change droughts. New Phytologist, 207(1), 14–
27. https​://doi.org/10.1111/nph.13354​

Sperry, J. S., Smith, D. D., Savage, V. M., Enquist, B. J., McCulloh, K. A., 
Reich, P. B., … von Allmen, E. I. (2012). A species‐level model for met‐
abolic scaling in trees I. Exploring boundaries to scaling space within 
and across species. Functional Ecology, 26(5), 1054–1065. https​://doi.
org/10.1111/j.1365-2435.2012.02022.x

Sperry, J. S., Venturas, M. D., Anderegg, W. R. L., Mencuccini, M., Mackay, 
D. S., Wang, Y., & Love, D. M. (2017). Predicting stomatal responses 
to the environment from the optimization of photosynthetic gain and 
hydraulic cost. Plant Cell and Environment, 40(6), 816–830. https​://
doi.org/10.1111/pce.12852​

Sperry, J. S., Wang, Y., Wolfe, B. T., Mackay, D. S., Anderegg, W. R., 
McDowell, N. G., & Pockman, W. T. (2016). Pragmatic hydraulic 
theory predicts stomatal responses to climatic water deficits. New 
Phytologist, 212(3), 577–589. https​://doi.org/10.1111/nph.14059​

Tang, J., & Zhuang, Q. (2008). Equifinality in parameterization of pro‐
cess‐based biogeochemistry models: A significant uncertainty 
source to the estimation of regional carbon dynamics. Journal of 
Geophysical Research: Biogeosciences, 113(4), 1–13. https​://doi.
org/10.1029/2008J​G000757

Ter‐Mikaelian, M. T., & Korzukhin, M. D. (1997). Biomass equations for sixty 
five North American tree species. Forest Ecology and Management, 97, 
1–24. https​://doi.org/10.1016/s0378-1127(97)00019-4

Thomas, R. Q., & Williams, M. (2014). A model using marginal efficiency of 
investment to analyze carbon and nitrogen interactions in terrestrial 
ecosystems (ACONITE Version 1). Geoscientific Model Development, 
7(5), 2015–2037. https​://doi.org/10.5194/gmd-7-2015-2014

Trugman, A. T., Anderegg, L. D. L., Wolfe, B. T., Birami, B., Ruehr, N. K., 
Detto, M., … Anderegg, W. R. L. (2019). Climate and plant trait strat‐
egies determine tree carbon allocation to leaves and mediate future 
forest productivity. Global Change Biology, 25, 3395–3405. https​://
doi.org/10.1111/gcb.14680​

Trugman, A. T., Detto, M., Bartlett, M. K., Medvigy, D., Anderegg, W. R. 
L., Schwalm, C., … Pacala, S. W. (2018). Tree carbon allocation ex‐
plains forest drought‐kill and recovery patterns. Ecology Letters, 21, 
1552–1560. https​://doi.org/10.1111/ele.13136​

Trugman, A. T., Fenton, N. J., Bergeron, Y., Xu, X., Welp, L. R., & Medvigy, 
D. (2016). Climate, soil organic layer, and nitrogen jointly drive forest 
development after fire in the North American boreal zone. Journal 
of Advances in Modeling Earth Systems, 8(3), 1180–1209. https​://doi.
org/10.1002/2015M​S000576

Trugman, A. T., Medvigy, D., Mankin, J. S., & Anderegg, W. R. L. (2018). Soil 
moisture stress as a major driver of carbon cycle uncertainty. Geophysical 
Research Letters, 45, 6495–6503. https​://doi.org/10.1029/2018G​L078131

Venturas, M. D., Sperry, J. S., Love, D. M., Frehner, E. H., Allred, M. G., 
Wang, Y., & Anderegg, W. R. L. (2018). A stomatal control model 
based on optimization of carbon gain versus hydraulic risk predicts 
aspen sapling responses to drought. New Phytologist, 220, 836–850. 
https​://doi.org/10.1111/nph.15333​

Walker, A. P., Hanson, P. J., De Kauwe, M. G., Medlyn, B. E., Zaehle, S., 
Asao, S., … Norby, R. J. (2014). Comprehensive ecosystem model‐
data synthesis using multiple data sets at two temperate forest free‐
air CO2 enrichment experiments: Model performance at ambient 
CO2 concentration, 119, 937–964. Journal of Geophysical Research: 
Biogeosciences. https​://doi.org/10.1002/2013J​G002516

Wang, Y. P., Kowalczyk, E., Leuning, R., Abramowitz, G., Raupach, 
M. R., Pak, B., … Luhar, A. (2011). Diagnosing errors in a land sur‐
face model (CABLE) in the time and frequency domains. Journal 
of Geophysical Research: Biogeosciences, 116(1), 1–18. https​://doi.
org/10.1029/2010J​G001385

Wang, Y., Sperry, J. S., Venturas, M. D., Trugman, A. T., Love, D. M., & 
Andereg, W. R. L. (2019). The stomatal response to rising CO2 con‐
centration and drought is predicted by a hydraulic trait-based optimi‐
zation model. Tree Physiology, 39, 1416–1427.

Weng, E. S., Malyshev, S., Lichstein, J. W., Farrior, C. E., Dybzinski, 
R., Zhang, T., … Pacala, S. W. (2015). Scaling from individual 
trees to forests in an Earth system modeling framework using a 
mathematically tractable model of height‐structured competi‐
tion. Biogeosciences, 12(9), 2655–2694. https​://doi.org/10.5194/
bg-12-2655-2015

Westoby, M., Cornwell, W. K., & Falster, D. S. (2012). An evolutionary 
attractor model for sapwood cross section in relation to leaf area. 
Journal of Theoretical Biology, 303, 98–109. https​://doi.org/10.1016/j.
jtbi.2012.03.008

Whittaker, R. H., & Woodwell, G. M. (1968). Dimension and production 
relations of trees and shrubs in the Brookhaven Forest, New York. 
The Journal of Ecology, 56(1), 1–25. https​://doi.org/10.2307/2258063

Wolf, A., Anderegg, W. R., & Pacala, S. W. (2016). Optimal stomatal be‐
havior with competition for water and risk of hydraulic impairment. 
Proceedings of the National Academy of Sciences of the United States 
of America, 113, E7222–E7230. https​://doi.org/10.1073/pnas.16151​
44113​

Xu, X., Medvigy, D., Powers, J. S., Becknell, J. M., & Guan, K. (2016). 
Diversity in plant hydraulic traits explains seasonal and inter‐annual 
variations of vegetation dynamics in seasonally dry tropical forests. 
New Phytologist, 212, 80–95. https​://doi.org/10.1111/nph.14009​

Yang, J., Medlyn, B. E., De Kauwe, M. G., & Duursma, R. A. (2018). 
Applying the concept of ecohydrological equilibrium to predict 
steady‐state leaf area index. Journal of Advances in Modeling Earth 
Systems, 10, 1740–1758. https​://doi.org/10.1029/2017M​S001169

Yarie, B. J., Kane, E., & Hall, B. (2007). Aboveground biomass equations 
for the trees of interior Alaska, (January).

Zaehle, S., Sitch, S., Prentice, I. C., Liski, J., Cramer, W., Erhard, M., … 
Smith, B. (2006). The importance of age‐related decline in forest NPP 
for modeling regional carbon balances. Ecological Applications, 16(4), 
1555–1574. https​://doi.org/10.1890/1051-0761(2006)016[1555:‐
TIOAD​I]2.0.CO;2

Zanne, A. E., Lopez‐Gonzalez, G., Coomes, D. A., Ilic, J., Jansen, S., Lewis, 
S. L., …Chave, J. (2009). Global wood density database. Dryad. 
Identifier: http://Hdl.Handle.Net/10255/​Dryad.235

Zianis, D., Muukkonen, P., Mäkipää, R., & Mencuccini, M. (2005). Biomass 
and stem volume equations for tree species in Europe. Vantaa, Finland: 
The Finnish Society of Forest Science, The Finnish Forest Research 
Institute. Retrieved from http://www.metla.fi/silva​fenni​ca/full/smf/
smf004.pdf

SUPPORTING INFORMATION

Additional supporting information may be found online in the 
Supporting Information section at the end of the article. 

How to cite this article: Trugman AT, Anderegg LDL, Sperry 
JS, Wang Y, Venturas M, Anderegg WRL. Leveraging plant 
hydraulics to yield predictive and dynamic plant leaf 
allocation in vegetation models with climate change. Glob 
Change Biol. 2019;00:1–14. https​://doi.org/10.1111/
gcb.14814​

https://doi.org/10.1111/nph.13354
https://doi.org/10.1111/j.1365-2435.2012.02022.x
https://doi.org/10.1111/j.1365-2435.2012.02022.x
https://doi.org/10.1111/pce.12852
https://doi.org/10.1111/pce.12852
https://doi.org/10.1111/nph.14059
https://doi.org/10.1029/2008JG000757
https://doi.org/10.1029/2008JG000757
https://doi.org/10.1016/s0378-1127(97)00019-4
https://doi.org/10.5194/gmd-7-2015-2014
https://doi.org/10.1111/gcb.14680
https://doi.org/10.1111/gcb.14680
https://doi.org/10.1111/ele.13136
https://doi.org/10.1002/2015MS000576
https://doi.org/10.1002/2015MS000576
https://doi.org/10.1029/2018GL078131
https://doi.org/10.1111/nph.15333
https://doi.org/10.1002/2013JG002516
https://doi.org/10.1029/2010JG001385
https://doi.org/10.1029/2010JG001385
https://doi.org/10.5194/bg-12-2655-2015
https://doi.org/10.5194/bg-12-2655-2015
https://doi.org/10.1016/j.jtbi.2012.03.008
https://doi.org/10.1016/j.jtbi.2012.03.008
https://doi.org/10.2307/2258063
https://doi.org/10.1073/pnas.1615144113
https://doi.org/10.1073/pnas.1615144113
https://doi.org/10.1111/nph.14009
https://doi.org/10.1029/2017MS001169
https://doi.org/10.1890/1051-0761(2006)016%5B1555:TIOADI%5D2.0.CO;2
https://doi.org/10.1890/1051-0761(2006)016%5B1555:TIOADI%5D2.0.CO;2
http://Hdl.Handle.Net/10255/Dryad.235
http://www.metla.fi/silvafennica/full/smf/smf004.pdf
http://www.metla.fi/silvafennica/full/smf/smf004.pdf
https://doi.org/10.1111/gcb.14814
https://doi.org/10.1111/gcb.14814

