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Summary

Climate change exposes vegetation to unusual drought, causing declines in productivity and

increasedmortality. Drought responses are hard to anticipate because canopy transpiration and

diffusive conductance (G) respond to drying soil and vapor pressure deficit (D) in complexways.

A growing database of hydraulic traits, combined with a parsimonious theory of tree water

transport and its regulation, may improve predictions of at-risk vegetation. The theory uses the

physics of flow through soil and xylem to quantify how canopy water supply declines with

drought and ceases by hydraulic failure. This transpiration ‘supply function’ is used to predict a

water ‘loss function’ by assuming that stomatal regulation exploits transport capacity while

avoiding failure. Supply–loss theory incorporates root distribution, hydraulic redistribution,

cavitationvulnerability, andcavitation reversal. The theoryefficiently defines stomatal responses

to D, drying soil, and hydraulic vulnerability. Driving the theory with climate predicts drought-

induced loss of plant hydraulic conductance (k), canopyG, carbonassimilation, andproductivity.

Data lead to the ‘chronic stress hypothesis’ wherein > 60% loss of k increases mortality by

multiple mechanisms. Supply–loss theory predicts the climatic conditions that push vegetation

over this risk threshold. The theory’s simplicity and predictive power encourage testing and

application in large-scale modeling.

I. Introduction

Climate change challenges our grasp of plant and ecosystem
functioning. We need informed projections for how plants and
their ecosystems will respond to new conditions. Plants are often
water-limited, so regions experiencing novel ‘climate-change’

droughts are of particular concern (Allen et al., 2010). How much
drought stress can the standing vegetation experience before
productivity declines and mortality rises? This is a practical
question that has ramifications beyond impairing natural resources,
including major feedbacks to climate and hydrology through
altered water and carbon cycles (Bonan, 2008; Zhao & Running,
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2010). In this review, we outline what plant hydraulics can tell us
about how plants will respond to drought. Rather than give a
retrospective summation of what has already been done, we offer a
prospectus for how we can move forward and make better
predictions of plant drought responses on large scales. Such
predictions require models. Our objective is to identify critical
hydraulic properties of plants, not all of which have been integrated
into large-scale climate and landscape modeling. To encourage
their integration, we provide a parsimonious theoretical frame-
work. We begin by distilling a basic hydraulic theory of water
supply and loss, then consider complications, move on to illustrate
application, and conclude with drought impacts on productivity
and mortality.

A central modeling problem that plant hydraulics can solve is a
mechanistically based prediction of transpiration rate as a function
of soil moisture and atmospheric vapor pressure deficit (D). Much
follows from that prediction: transpiration yields diffusive con-
ductance to carbon dioxide (CO2) uptake, which constrains the
carbon assimilation rate, which fuels respiration and growth, which
influences plant productivity and survival, and ultimately ecosys-
tem productivity and sink strength. Hence, we focus on hydraulic
theory for deriving canopy transpiration rate (E ) and canopy
diffusive conductance (G = E/D) from climate. In the process, the
corollary variables of xylem pressure (P ) and hydraulic conduc-
tance (k) are involved. The causally downstream phenomena of
productivity and mortality are discussed more qualitatively in the
context of a ‘chronic stress hypothesis’ for predicting the risk of
drought-related plant decline.

Modeling transpiration and diffusive conductance is a problem
because their responses to soil and atmospheric drought cannot be
deduced from meteorological variables such as those in Penman–
Monteith type equations (Campbell & Norman, 1998). Missing
from these physically sound equations is the plant. Plants have roots
and xylem that influence the potential water supply for transpira-
tion, and they have stomata that actively regulate transpirational
water loss. Empirical functions can be incorporated to mimic
stomatal responses to soil moisture andD (Jarvis, 1976; Ball et al.,
1987), but they lack the predictive power of a physically
constrained equation grounded in a universal concept. As a result,
capturing the drought response has proven difficult for ecosystem
models (Powell et al., 2013; Zuidema et al., 2013).

Plant hydraulics provides a physically constrained bridge
between the physiological regulation of transpiration and the
environmental drivers of climate and hydrology. Xylem transport
in particular is inherently grounded in physics, having much in
common with soil water transport (Sperry et al., 2002). Hence
xylem flow is easy to model, providing the link between the soil
moisture profile tapped by the root system and the evaporative
demand above the canopy. The concept of using plant hydraulics to
improve predictions of gas exchange reduction from drought has
been profitably adopted by at least one ecosystem flux model, SPA
(Williams et al., 1996, 2001; Bonan et al., 2014). Although
somewhat successful, SPA simply limits transpiration by setting a
minimum canopy xylem pressure, and it can underpredict the
drought response (Powell et al., 2013). The stand-level TREES
(Mackay et al., 2003) model currently incorporates xylem

cavitation (McDowell et al., 2013) using the detailed hydraulic
model of Sperry et al. (1998). The success of these approaches (see
also Parolari et al., 2014) argues for implementing more flexible
and realistic hydraulic theory as a foundation for predicting plant
drought responses.

This review elaborates on the following logic for applying plant
hydraulics to climate-change predictions. (1) The transpiration
stream flows through porous media over most of its length, and the
physics of this flow can be used to define a ‘supply function’ for
potential transpiration rate as a function of the canopy xylem
pressure and tapped soil moisture profile. (2) The assumption that
stomatal regulation of transpirational water loss will exploit, but
not exceed, a limited supply is used to derive a transpiration ‘loss
function’ from the supply function. (3) The supply–loss concept
can accommodate diversity in key hydraulic traits. (4) Examples
demonstrate the conceptual ease of driving the supply–loss
framework with climate and hydrology. (5) The resulting predic-
tions of water status, gas exchange, and productivity from climate
indicate the degree of ‘chronic stress’ to the vegetation and hence
the hypothetical risk of drought-relatedmortality, embodied by the
‘chronic stress hypothesis’.

As a proof of concept, we illustrate key steps using a soil–plant–
atmosphere model developed from Sperry et al. (1998). However,
it is not themodel particulars that are important at themoment, but
rather the basic hydraulic principles and their predictive power.
The intent is to increase the accessibility of the approach and
encourage its wider evaluation by the community.

II. The transpiration supply function

The supply function describes the potential rate of water supply for
transpiration (E) as a function of the canopy xylem pressure
(Pcanopy) (Sperry et al., 1998, 2002). The E(Pcanopy) supply
function depends on how the hydraulic conductivity (K) of soil
and plant declines withmore negative sap pressure (P ).Whether in
the soil or in the dead xylem conduits of the plant, the transpiration
stream is pulled through porous media by the wicking action of
evaporating cell wall surfaces (Pickard, 1981). As the media are
subjected to more negative sap pressure, water drains from more
of the pore space, and the K of the media declines. The consequent
K(P) function falls monotonically from a maximum K (Kmax) as P
becomes more negative (Fig. 1a). The K(P ) function is called a
‘vulnerability curve’ for xylem (Tyree & Sperry, 1989), and an
‘unsaturated conductivity curve’ for soil (Campbell, 1985).

To clarify how theK(P ) behavior of porous media dictates the E
(Pcanopy) supply function, we collapse the complexity of the soil–
canopy transpiration stream into a single path that is composed of a
medium with a single K(P ) function (Fig. 1a). This simplification
emphasizes the theoretical concepts at the expense of details added
later.

The first step is to convert the K(P ) conductivity vulnerability
curve of the media (Fig. 1a) into the k(P ) conductance vulnera-
bility curve of the particular soil–canopy continuum (Fig. 1b).
Conductivity (K, normalized by length and cross-sectional area) is
an intrinsic property of a particular medium. Conductance (k)
depends in addition on how much media the water is flowing
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through. The conversion from K to k is a matter of exchanging
maximum hydraulic conductance (kmax) for Kmax in the K(P )
function, keeping other curve shape parameters constant. Just as the
K(P ) conductivity vulnerability curve yields K of the medium
exposed to a single value of P, the k (P ) conductance vulnerability
curve gives k of the entire continuum for a single value ofP from soil
to canopy (Fig. 1b). The kmax can be estimated frommeasurements
under nonstressed conditions, or obtained from allometric
relationships that are empirical (Meinzer et al., 2005) or calculated
from xylem anatomy and branching structure (Sperry et al., 2012;
Smith et al., 2014; Smith & Sperry, 2014). Conductance can be
expressed relative to a reference cross-sectional area at some point in
the flow path. A seasonably stable reference, such as ground area or
basal area (all figures express k, E andG per basal area), ensures that
changes in absolute conducting capacity are not obscured by
changes in reference area (asmight be the case if leaf areawere used).

The second (and last) step is to convert the k(P ) function to the
E(Pcanopy) supply function. This is easily done with the integral
transform method developed for similar problems in soil physics
(Gardner, 1958; Campbell, 1985; Sperry et al., 1998; Comstock&
Sperry, 2000). To explain: Ei at Pcanopy = Pi is the integral of the
k(P) function from Po at the soil end of the flow path to Pi at
the canopy end: Ei = Po∫

Pi k(P) dP. To illustrate, in Fig. 1(b), the
shaded ‘E = ∫k’ area between Po =�0.5 and Pi =�2MPa equals

Ei, which is plotted as the gray symbol on the E(Pcanopy) supply
function in Fig. 1(c). The entire E(Pcanopy) function is obtained by
holding Po constant and performing the integration for the full
range of Pi. Integrating over the monotonic decline in k with Pi
yields a monotonic increase in E that effectively saturates at Ecrit
(Fig. 1c, white circle) as k approaches zero. The Ecrit is the limiting
steady-state E; any greater E will drive k to zero and desiccate the
canopy. Mathematically, k may not reach zero (depending on the
equation chosen to represent k(P ) decline; a two-parameter
Weibull function is used here), but physiologically it effectively
does, and a judgment of minimum relevant k
(= 0.01 kg h�1 MPa�1 m�2 in the figures) suffices to end the E
(Pcanopy) supply function. This somewhat arbitrary endpoint is of
little consequence for the essentially saturated value of Ecrit, but will
have a big effect on the correspondingPcrit (= Pcanopy atEcrit). Thus,
Ecrit is a more reliable point of reference for estimating safety
margins from hydraulic failure than Pcrit.

TheE(Pcanopy) supply function containsmuch information. The
Po intercept, at E = 0, represents the predawn canopy sap pressure
(no nocturnal transpiration) which integrates the rooted soil
moisture profile (e.g. Fig. 1c, black ‘Predawn’ circle at�0.5MPa)
and includes any gravitational gradient (�0.01MPa m�1). As E
increments from 0, the disproportionately greater drop in Pcanopy
results from the loss of k. Graphically, the soil–canopy k (k = E/ΔP)
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Fig. 1 Deriving the transpiration ‘supply function’ from a vulnerability curve. (a) A ‘single-element’ soil–canopy continuum has a transpiration stream (‘E’
arrow)flowing throughaporousmediumwithonehydraulic conductivity vulnerability curve (K(P)) along its length. (b)Thek(P) hydraulic conductance curve (K
converted to k per unit basal area) gives the soil–canopy hydraulic conductance at one soil = canopy pressure (no pressure drop: ΔP = 0). Integrating the k(P)
curve over any ΔP drop from soil to canopy yields the steady-state transpiration rate (E) at that ΔP (shaded E, ∫k region under curve). (c) The E(Pcanopy) supply
function at a given predawn sap pressure (black circles) as obtained by integrating the k(P) function for P = predawn to progressively greater canopy
sap pressure (Pcanopy). The critical point (white circle with Ecrit and Pcrit extrema) corresponds to k(P)� 0. The dE/dPcanopy of the supply function (e.g. dashed
dE/dPcanopy tangent at gray circle; Pcanopy =�2 MPa) equals the hydraulic conductance of the soil–canopy continuum exposed to that same Pcanopy
(e.g. k(Pcanopy) arrow in (b) at P =�2MPa). The E/(predawn� Pcanopy) slope (labeled gray diagonal) gives the hydraulic conductance of the soil–canopy path
during transpiration when there is a soil-to-canopy ΔP drop. Drought shifts the supply function to the right by lowering the predawn pressure (arrow), and
flattens it by reducing Ecrit.
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is the slope of the line from the intercept atE = 0 to any particular E
(e.g. Fig. 1c slope of E from P =�0.5 to �2MPa). This slope
becomes shallower as k drops with increasing E. The loss of k is
greatest where pressures are most negative at the downstream
Pcanopy extreme. The downstream loss of k is graphically evident
from the continuous decline in the dE/dPcanopy derivative along
the E(Pcanopy) curve. By the fundamental theorem of calculus, the
dE/dPcanopy derivative equals k(Pcanopy) from the conductance
vulnerability curve. The k(Pcanopy) is the conductance if the entire
continuumwere exposed toPcanopy; hence it corresponds to the local
loss of hydraulic conductance at the canopy end of the flow path
whereP = Pcanopy.To illustrate, in Fig. 1(c), the dashed dE/dPcanopy
slope at�2MPa equals k(Pcanopy) at�2MPa on the conductance
vulnerability curve (Fig. 1b, k(Pcanopy) = dE/dPcanopy arrow). The
corresponding k = E/ΔP slope (Fig. 1c, gray slope) is greater
because sap pressure is less negative than the�2 extreme alongmost
of the continuum. The dE/dPcanopy approaches zero at Ecrit,
indicating that the total loss of downstream hydraulic conductance
limits the maximum steady-state rate of canopy water supply.

The supply function responds predictably to the depletion of soil
moisture during drought (e.g. Fig. 1c, ‘Drought’ arrow). The
predawn Po intercept shifts to more negative values, and the E
(Pcanopy) trajectory flattens as Ecrit diminishes. The supply function
gradually extinguishes as more negative predawn P drives Ecrit to
zero (Sperry et al., 1998).

III. The transpiration loss function

The loss function specifies where the plant regulates its actual
transpiration rate along the E(Pcanopy) supply function. Regulation
is achieved via control of canopy diffusive conductance (G ) mostly
by stomatal movements. Much about the physiology of stomatal
regulation in response to plantwater status anddrought is uncertain
(Buckley&Mott, 2013), but a fewpoints of clarity lay a foundation
for approximating its phenomenology at the canopy scale.

Stomatal and canopy diffusive conductances generally decrease
in response to soil and atmospheric water stress, with a sensitivity
that can vary across species and circumstances (Schulze, 1986;Oren
et al., 1999). It is also evident that stomata rarely allow Ecrit to be
exceeded as long as soilmoisture is still available (Hacke et al., 2000;
Sperry et al., 2002; Holtta et al., 2012). Such suicidal behavior
would cause catastrophic desiccation, sometimes referred to as
‘runaway cavitation’ or ‘hydraulic failure’ (Tyree & Sperry, 1988).
A point of clarity, true ‘runaway’ cavitation (E > Ecrit) is to be
distinguished from ‘stable’ cavitation associated with E ≤ Ecrit. It is
most likely that Ecrit is only exceeded under extreme soil drought
when stomata are maximally closed, and the tapped soil moisture
profile (and plant) slowly dries until Ecrit� 0, extinguishing the
supply function (Davis et al., 2002).

Given the stress-induced constraints on E supply rate, it makes
sense to use the E(Pcanopy) supply function to predict an E(Pcanopy)
transpiration loss function. Deriving the loss function is a
significant step beyond the Sperry et al. (1998) framework which
stopped at modeling the supply function. Three principles
constrain the loss function. (1) It should mimic actual stomatal
behavior. (2) The loss function should be mathematically

dependent on the supply function. This represents the critical
simplifying assumption that traits influencingwater supply and loss
evolved in coordination. (3) The loss function should balance a
trade-off between utilizing the full supply capacity (the investment
in root and xylem), while controlling an inevitable loss of hydraulic
conductance (costly to replace and consequential if not), and
avoiding premature runaway cavitation (death by desiccation). The
supply function derivative (dE/dPcanopy) is the ideal variable to
drive the loss function. As explained, dE/dPcanopy represents the
limiting hydraulic conductance at the downstream end of the flow
path, and it falls towards zero as Ecrit is approached. Soil drought
and high D both push the plant towards lower dE/dPcanopy.
Progressive stomatal closure pushes back. A simple rule for a
loss function is that stomata should close more as stress pushes
dE/dPcanopy closer to zero. By following this rule, the plant will
exploit its full supply capacity when stressed, but will do so in a
conservative manner that controls the accumulation of stable
cavitation and prevents runaway cavitation.

For demonstration, we derive a suitable supply-coupled loss
function based on dE/dPcanopy (Fig. 2). It is not the only possibility,
nor may it prove the best at quantitatively capturing stomatal
regulation. The point is to show the promise of using the supply
function to model stomatal responses to water stress. Our sample
loss function requires one additional parameter, which is the
maximum canopy diffusive conductance (Gmax, representing
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function (solid black curve). The unregulated E0 (open circle) is the product of
maximum canopy diffusive conductance (Gmax) and vapor pressure deficit
(D). The corresponding unregulated pressure drop (ΔP0) is given by the
supply function (outer set of gray dashed intercepts). RegulatedΔP assumes
that ΔP0 is reduced by the fractional drop in the unregulated dE0/dPcanopy0

(shallow dashed tangent) from its maximum (at predawn intercept; steeper
dashed tangent; see equation under the x-axis). TheΔP reaches amaximum
before E0 reaches Ecrit, at which point ΔP is assumed to saturate, indicating a
maximal stomatal sensitivity to D that achieves constant E and ΔP. The
regulated E is given by the supply function at ΔP (inner set of gray dashed
intercepts). The requireddrop inG fromGmax (resulting frompartial stomatal
closure) is given by E/D.
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maximal stomatal opening). The E(Pcanopy) supply function is first
calculated from the predawn P and the continuum k(P ) function
(as diagrammed in Fig. 1). The maximum dE/dPcanopy is at the
predawn start of the curve (Fig. 2, dashed dE/dPmax tangent) and
equals the maximum soil–canopy k. The E 0 in the absence of G
regulation is given by E 0 =Gmax�D, and the corresponding
dE 0/dPcanopy0 derivative is read from the E(Pcanopy) supply curve
(Fig. 2, ‘Unregulated’ open circle on supply function). The fraction
(dE 0/dPcanopy0)/(dE/dPmax) drops from 1 to 0 as E 0 approaches
Ecrit, quantifying how close the plant is pushed to the critical point
without stomatal closure. Stomatal regulation is assumed to reduce
the unregulated pressure drop, ΔP 0 (Fig. 2, ΔP 0 arrow to
Unregulated circle), by this fraction, such that the regulated drop
ΔP = ΔP 0 ((dE 0/dPcanopy0)/(dE/dPmax)). As E

0 increases, this ΔP
function reaches a maximum (obviously reached before
dE 0/dPcanopy0 � 0 at E 0 = Ecrit). At this point, the biological ΔP is
assumed to saturate with D rather than to show an unrealistic
decline. Thus, beyond this ΔP saturation point the stomata are
assumed to be maximally sensitive to D by closing sufficiently to
keep E and Pcanopy constant. The regulated ΔP is used to find the
regulated E from the E(Pcanopy) curve (Fig. 2, ‘Regulated’ closed
circle). The regulated E divided by D yields the regulated G. The
Gmax can be obtained by tuning it to yield the observed E under
well-watered ‘reference’ (kmax) conditions. The loss function as
described is not readily reducible to a single equation (nor is the
supply function), but is a parsimonious numerical routine.

The loss function is intended to capture emergent stomatal
behavior, not the physiological mechanism by which it is achieved.
Themath does not represent steps in a stimulus–response sequence.
In general, however, it is physiologically feasible that stomatal
regulation could involve the sensing of dE/dPcanopy. Active
adjustments in stomatal aperture cause changes in E, and leaf cells
could sense the consequent changes inPcanopy which will increase in
amplitude with falling dE/dPcanopy. Short-term Pcanopy dynamics
could be coupled to the strength of a feedback signal influencing
aperture adjustment as in components of various mechanistic
stomatal models (Tardieu & Davies, 1993; Dewar, 2002).

Though simple and phenomenological, the supply-coupled loss
function predicts the complex interactions between stomatal
responses to D, soil drought, and soil–canopy hydraulic conduc-
tance (Fig. 3). Focusing first on theD response, as long as the soil is
wet, higherD drives up E along the supply function (Fig. 3a, black
‘Supply function’ curves) until E and ΔP saturate as dictated by the
loss function (e.g. Fig. 3a, gray ‘Loss function’ points saturate at
D > 1.5 kPa for wet supply functions). Beyond the D saturation
point, stomatal sensitivity is maximized and there is no further
change in E and Pcanopy. Drier soil enhances stomatal sensitivity by
causing saturation at ever-lower D, resulting in the collapse to a
single loss function as parent supply functions shift to more
negative intercepts. Turning to the soil drought response, solving
the loss function at a given D from progressively drier supply
functions predicts a continuous drop in E during drought (Fig. 3a,
gray ‘Loss function’ curves). The sensitivity of the stomata to soil
drought (at a given D) is indicated by the steepness of these loss
functions: a steeper drop in E (and correspondingly less of a drop in
Pcanopy) corresponds to a more sensitive stomatal response to soil

drying. Complete stomatal closure (E� 0) is approached before
Ecrit� 0 as required to avoid premature runaway cavitation.

The loss function is also sensitive to theK(P ) vulnerability curve
function of the transpiration pathway (Fig. 3a vs b). The more
resistant is the K(P ) function to cavitation, the more negative is
Pcrit, leaving the loss function more ‘room’ for carrying a
transpiration stream despite drying soil (e.g. Fig. 3a, Pcrit <�5).
Stomatal sensitivity to bothD and soil drought is indicated by loss
functions that converge less quickly and drop less steeply with soil
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drying (Fig. 3a, gray curves). Conversely, the more vulnerable the
K(P ) function is to cavitation, the less negative is Pcrit, forcing the
stomata to be maximally sensitive to D and soil drought (e.g.
Fig. 3b, Pcrit >�3MPa). This is indicated by loss functions
converging more rapidly and dropping more steeply with drought
(Fig. 3b, gray ‘loss functions’).

IV. General properties of the supply–loss theory

The supply–loss theory has general characteristics that persist
regardless of particulars of the loss function, or whether the flow
path consists of a single k(P ) element (Fig. 1), or of several k(P )
elements in series and parallel as discussed in ‘variations on the
theme.’ (1) The theory defines the stomatal response to D, and to
soil drought, and defines how these two responses interact (e.g.
Fig. 3). In particular, theD response eventually saturates to prevent
further water loss, it saturates faster in some species than others
(Fig. 3b vs a), and it saturates faster in all species as soils dry and the
drought response dominates. (2) The hydraulic vulnerability of the
soil–plant continuum dictates a plant’s position on the isohydric–
anisohydric continuum. A plant with a ‘resistant’ k(P ) allows
midday Pcanopy to fall considerably during soil or atmospheric
stress, and stomatal control is minimally sensitive. This is
anisohydric-type regulation exemplified by Fig. 3(a). Conversely,
a plant with a ‘vulnerable’ k(P ) function dictates a maximally
sensitive stomatal response to stress and a minimal drop in Pcanopy
during soil or atmospheric drought. This is more isohydric-type
behavior exemplified by Fig. 3(b). (3) Stress, whether from soil
drought or high atmosphericD, results in amuch greater reduction
in gas exchange rate (E and G ) than in soil–canopy hydraulic
conductance (Fig. 4; compare black PLC curve with gray PLG
curves). Thus, a ‘percentage loss of hydraulic conductivity’ (PLC)
metric of stress considerably underestimates consequent ‘percent-
age loss of diffusive conductance’ (PLG) which is at least (if not
more) detrimental to plant health. The PLG > PLC property
results from a stomatal control regime that must reduce E faster
than the reduction in whole-plant k as required to avoid the critical
point of the supply function.

All of these properties are qualitatively consistent with plant
behavior. With respect to property (1), the increase in E with D
typically saturates as stomatal closure becomes sufficient to prevent
further water loss (Oren et al., 1999). Species that saturate at higher
D are often more resistant to cavitation (e.g. Fig. 3a) than those
saturating at lowD (Fig. 3b; Bush et al., 2008; Litvak et al., 2012).
Saturation at low D has also been associated with soil drought,
which also closes stomata independently ofD (Schulze et al., 1972;
Thomas et al., 2000).

Properties (2) and (3) are also generally supported by a recent
meta-analysis of relationships between predawn andmidday xylem
pressure (Martinez-Vilalta et al., 2014). Plants that maintained
midday Pcanopy near constant with soil drought (isohydric-type
response) were also plants that were more vulnerable to cavitation;
conversely, plants whose midday P dropped with drought (more
anisohydric) tended to be more resistant to cavitation. This is
consistent with property (2). The midday P was also usually
observed to drop less rapidly than predawn P during drought,

indicating a generally diminishingΔP. AsΔP = E/k, the drop inΔP
means that E is usually reduced more than the corresponding k
during drought, consistent with property (3) (although exceptions
exist; Franks et al., 2007; Martinez-Vilalta et al., 2014).

V. Variations on the theme

The single-k(P )-element representation of supply–loss hydraulic
theory (Fig. 1) is conceptually useful, but probably not very
predictive inmost applications. Adding additional k(P ) elements as
described in this section captures key hydraulic traits, and couples
the plant to climate and hydrology. The easy integral transform
conversions between k(P ) and E(P ) (Fig. 1) still apply at the
element scale.However, linking the elements to generate the supply
and loss functions for the whole continuum may require a
numerical routine (e.g. multidimensional Newton–Rhapson)
depending on how the network is structured.

1. Vulnerability segmentation

Multiple hydraulic conductance elements in series (e.g. soil, root,
stem, leaf) are needed to represent ‘vulnerability segmentation’
where k(P ) functions differ between plant and soil, and between
plant organs (Tyree et al., 1993). The transpiration stream also
flows a short distance through living tissues of root and leaf, and as
the k(P ) behavior of this extra-xylary flow becomes better known
(Scoffoni et al., 2013) it could be incorporated as well. A general
principle is that the element with the lowest hydraulic conductance
in the series will have the dominant influence on the collective soil–
canopy k(P ) function, and hence the E(Pcanopy) supply and loss
functions. Elements with low k at the start of the vulnerability
curve, a steep drop in k, and a downstream location that develops
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more negative P, will create bottlenecks and heavily bias the loss
function.

The ‘bottleneck’ principle is reflected in the question of whether
soil or xylem is more limiting to plant water transport. Soil k(P ) is
radically different in form than xylem vulnerability curves (Fig. 5,
Vulnerability curves inset). Soil curves are usually modeled from
soil texture using ‘pedotransfer functions’ which take the formof an
exponential drop in K from field capacity (van Genuchten, 1980;
Campbell, 1985). The K(P ) conductivity function can be
converted to the k(P ) conductance function by estimating the
width of the rhizosphere (between bulk soil boundary and root
surface), and the surface area of absorbing roots (Sperry et al.,
1998). Soil k(P ) vulnerability curves start astronomically high
compared with xylem k(P ) curves (Fig. 5, dashed-dotted soil
vulnerability curves), mainly because root surface area is hugely
greater than xylem cross-sectional area. Hence, under wet condi-
tions, the relatively low xylem k limits the loss function (Fig. 5,
convergence to ‘xylem-limited’ loss function under less negative
Pcanopy). As soils dry, however, the plunge in soil k can drop to the
xylem range (Fig. 5, steep drop in soil vulnerability curves). The
lower the root surface area, the greater the drop in soil k (Fig. 5,
lower-most ‘Soil’ curves in inset), and the more of a bottleneck
develops in the rhizosphere (Fig. 5, ‘soil-limited’ loss functions
correspond to less root area). Given the uncertainty of soil K(P )
models in dry soil (Assouline & Or, 2013), and the area of
absorbing roots, a simplifying assumption is that root investment is
just sufficient to approach the xylem limit across the Pcanopy
spectrum. Any more roots would be wasted for no water gain, and
fewer roots would be a waste of investment in cavitation resistance
(Sperry et al., 1998, 2002). To the extent the assumption is false,

the theory will underpredict the magnitude of drought-induced
reduction of k, E, and G.

The bottleneck principle also explains the consequences of
vulnerability segmentation within the xylem (assuming xylem-
limited hydraulics). Xylem segmentation appears to be the rule
rather than the exception, with stems often being more hydrau-
lically resistant than leaves or roots (e.g. as in Fig. 6 inset; Sperry &
Saliendra, 1994; Tsuda & Tyree, 1997; Pivovaroff et al., 2014).
The least sensitive loss function is achieved by assigning all organs
the most resistant vulnerability curve (Fig. 6; ‘Stem’ loss curve has
the stem vulnerability curve in all organs). Incorporating the
considerably more vulnerable root curve increases the sensitivity of
the loss function (Fig. 6, ‘Stem + root’ curve), because roots
become a bottleneck as soils dry out. The continuum is much
more sensitive, however, to the incorporation of the leaf curve
(Fig. 6, ‘Stem + leaf’ loss curve; ‘Leaf’ vs ‘Stem’ vulnerability
curves). Leaves are the most downstream element, and although
they are more resistant than roots in this example, they are exposed
to more negative P, and so exert more of an influence. The most
sensitive loss function incorporates complete vulnerability seg-
mentation (Fig. 6, ‘Stem + root + leaf’). The effect of vulnerability
segmentation will also be influenced by the relative initial k in each
organ (e.g. Fig. 6; k(P ) curves assume 50–25–25% of total
minimum plant resistance in root–stem–leaf; Sperry et al., 1998;
Sack & Tyree, 2005).

2. Root distribution

Partitioning the belowground continuum into multiple root and
rhizosphere elements represents the soil–root profile with discrete
layers. The root depth profile determines: the predawn xylem
pressure, and hence how the supply–loss functions shift as soils dry
or wet up; the rate of soil drying with depth from transpirational
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withdrawal; and the extent of nocturnal hydraulic redistribution
(Horton & Hart, 1998). All three properties are essential for
linking plant hydraulics to climate and hydrology.

3. Recovery of hydraulic conductance

Soil and xylem K(P ) functions describe the loss of hydraulic
conductivity in a porous medium as pressures drop during water
stress. How much hysteresis is there in these curves when a stress
episode is relaxed and pressures rise? In soil, refilling of pore space
begins immediately on rewetting. Accounting for soil K(P )
hysteresis (Mualem & Miller, 1979) is probably unnecessary
because transpiration should be xylem-limited under wet soil
conditions (Fig. 5).

In xylem, the degree of vulnerability curve hysteresis depends on
the ability to refill embolized conduits in the short term or grow new
xylem in the long. Bubble physics suggests that gas-filled conduits
will not refill unless the surrounding sap pressure rises above near-
atmospheric thresholds (Yang & Tyree, 1992). The transpiration
stream can only reach such pressures when transpiration is minimal
and soil is wet, conditions that also favor positive osmotic root
pressures (Milburn&McLaughlin, 1974; Sperry, 1986, 1993; Yang
& Tyree, 1992; Hacke & Sauter, 1996). Accordingly, vulnerability
curves should exhibit prolonged hysteresis, with refilling limited to
windows of high P opportunity. However, there is some evidence
that sap pressures in embolized conduits can be actively elevated
above the transpiration stream, driving frequent diurnal cycles of
cavitation and reversal (Salleo et al., 1996; Zwieniecki &Holbrook,
1998; Zwieniecki et al., 2000; Bucci et al., 2003; Brodersen et al.,
2010; Brodersen & McElrone, 2013). Although this mechanism is
somewhat controversial because of measurement artifacts (Cochard
et al., 2000; Wheeler et al., 2013), it would predict minimal
vulnerability curve hysteresis.

The evidence suggests that postdrought refilling can occur, but
not in every species or circumstance (Salleo & Lo Gullo, 1993;
Alder et al., 1996; Hacke et al., 2000; Hacke& Sperry, 2003;West
et al., 2008). The ability to refill after drought may depend on
drought severity (Hacke& Sperry, 2003), and it may be inherently
lower in more cavitation-resistant species (Ogasa et al., 2013).
While it is natural to assume that postdrought xylem refillingwould
always be advantageous (Klein et al., 2013), examples in the next
section suggest otherwise.

VI. Predicting responses to climate

It is conceptually easy to drive the supply–loss theory (Figs 1, 2) as
applied to a minimum set of conductance elements, with climate
and hydrology at a landscape scale. The bulk soil moisture profile
becomes an output that is driven by daytime transpiration
withdrawal, nighttime hydraulic redistribution, and inputs from
groundwater flow and precipitation. Spatial heterogeneity of
vegetation, soil, climate, and hydrology could be handled as in
current land surface models (Levis, 2010), but with plant
functional types being defined by hydraulic traits (e.g. cavitation
resistance, root distribution, and refilling ability). The spatial unit
would be plots whose vegetation and substrate can bemeaningfully

reduced to a single soil–plant–atmosphere continuum. The single
catena would represent the parallel paths of the collective plot basal
area. Vegetatively diverse stands could be handled by partitioning
the catena into multiple hydraulic types. Arrays of plots constitute
the landscape. The temporal scale would extend from the time step
(c. half-hourly to daily) to a growing season for continuous
simulation, with multiple growing seasons requiring parameter
adjustment occasioned by the offseason (e.g. winter soil recharge
and stand development). Simulationwould be driven by time series
of plot-specific precipitation and D obtained by downscaling
regional climate models. The supply–loss theory would yield plot-
specific time series of growing season soil–canopy k, E, P and G.

Example calculations visualize the input–output for the theory
and also some effects of xylem refilling (Fig. 7). Daily time steps are
used with a very simple treatment of transpiration withdrawal,
infiltration, groundwater flow, and hydraulic redistribution. The
midday D input (e.g. Fig. 7a, ‘D’ line) represents the typical
growing season range for central Utah, USA (Bush et al., 2008).
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The soil is initially at field capacity, sizeable rains occur every 15th
day (Fig. 7a, ‘Rain’ bars), and there is no groundwater input. The
vegetation is a stand of aspen (Populus tremuloides; K(P ) from
Hacke et al., 2001).

Among the outputs is a time course ofmidday soil–canopy k and
G (Fig. 7b). When there is no xylem refilling, k declines
monotonically in a step-wise manner with each drought (Fig. 7b,
gray k line). As a result, the postdrought rebound in G is damped,
and amore conservative use of water develops. Conversely, if xylem
refills (Fig. 7c), the postdrought rebound in k translates to full
rebound in G. The consequently rapid water use creates more
extreme reductions in k andG through the season. Thus, a potential
advantage of not refilling is to prepare the plant for more
conservative water use and less water stress during a progressively
drier growing season. The outcome would probably be different
where drought was followed by abundant rainfall because full
recovery would maximize use of a nonlimiting water supply. This
quick study illustrates how the theory can be used to infer the
context-specific consequences of hydraulic traits.

More generally, the theory can relate drought severity to the
magnitude of the plant’s physiological response. To show how,
growing seasons for three hydraulic types of woody vegetation in
central Utah (USA) were simulated (Fig. 8): a low-elevation
(1620 m) riparian cottonwood stand (Populus fremontii; Pockman
& Sperry, 2000), midmontane aspen (2100–3000 m), and low-
elevation (1300 m) sagebrush (Artemisia tridentata; Kolb&Sperry,
1999). Growing seasons start with soil at field capacity in keeping
with the snow-driven hydrology of this temperate region (Dobro-
wolski et al., 1990). Inputs from rain and groundwater were varied
to simulate everything froma complete drought (no growing season
water input) to no perceived drought (i.e. limited reduction in k or
G of vegetation).

The simplest drought quantifier is the absolute amount of water
added to the root zone during a growing season (Fig. 8, ‘Growing
season water input’ axis), and simple physiological indices of the

drought response are growing season medians of midday PLC and
PLG (relative to seasonal maxima; Fig. 8, black and white symbols,
respectively). For all three vegetation types, at least 0.4 m of water
input is needed to keep the median PLC below 10. As water input
decreased below 0.4 m, median PLC and PLG increased in an
approximately linear fashion, although the rate of increase was less
in the cavitation-resistant and deeper rooted sagebrush (Fig. 8c).
Whether or not the xylem refilled made little difference to the
plant’s response (Fig. 8b, square ‘W. refilling’ symbols; circles
represent no refilling). As predicted by the general behavior of the
supply–loss framework (Fig. 4), median PLG increased faster with
drought severity than PLC in all vegetation types. More complex
drought indices (Heim, 2002) could be substituted for absolute
water inputs, and various time course statistics could substitute for
median PLC/PLG.

VII. Implications for productivity and mortality: the
chronic stress hypothesis

The scheme outlined provides a simple, yet mechanistically robust
linkage between climate and the capacity of the plant tomovewater
(soil–canopy k) and access CO2 (G ). These are still esoteric
variables if the goal is to predict drought effects on productivity and
mortality. But it is easy to see how G could constrain productivity
estimates. Briefly, G (expressed per unit leaf area) can be fed into
photosynthesis models to obtain canopy and plot assimilation rate.
Carbon allocation modeling can partition assimilation into its
various sinks, including productivity (biomass growth).Many such
models exist (Le Roux et al., 2001), although they could benefit
from a better understanding of phloem transport limitations
(Sevanto, 2014). Being able to constrain estimates of drought-
induced productivity decline by using hydraulically derived G
would be an important advance for assessing impacts of climate-
change droughts on ecosystem carbon cycling (Zhao & Running,
2010).
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It ismore difficult to define amechanistic link between hydraulic
theory andmortality. Just as it can be difficult to pinpoint the actual
cause of death in humans, it is proving difficult to do so in water-
stressed trees (Sala et al., 2010; Anderegg et al., 2012a; McDowell
et al., 2013). Rather than attempt to specify each link in every chain
ofmortal causation, it is probably easier to identify ‘risk factors’ that
can kill by innumerable proximal causes.

A growing body of work on drought mortality points to a
hydraulic risk factor, embodied by what we call the ‘chronic
stress’ hypothesis. According to this hypothesis, chronically
high PLC (e.g. above c. 60) induced by cavitation tends to
precede mortality. In a study of pinyon–juniper woodland
(Pinus edulis and Juniperus monosperma), tree mortality was
compared with tree hydraulics using the Sperry et al. (1998)
model (Plaut et al., 2012; McDowell et al., 2013). Predicting
soil–canopy PLC over multiple growing seasons suggested that
none of the trees went ‘critical’ (PLC = 100), but trees of both
species that ultimately died were unique in spending over 50%
of their growing season days at a PLC > 68. The TREES
model (Mackay et al., 2003) came to a similar conclusion
(McDowell et al., 2013). Extensive study of natural aspen
stands has associated mortality with PLC > 60 in root and
stem segments, with the potential for a long lag time between
PLC-inducing drought and ultimate death (Anderegg et al.,
2012b, 2013a). A link between branch PLC > 70 and dieback
was found in several species growing naturally in Texas and
Australia (Rice et al., 2004; Kukowski et al., 2013). A large
number of pot or garden studies of controlled drought have
come to similar conclusions (Tyree et al., 2002, 2003; Brodribb
& Cochard, 2009; Kursar et al., 2009; Brodribb et al., 2010;
Galvez et al., 2011, 2013; Mitchell et al., 2012; Adams et al.,
2013; Barigah et al., 2013; Urli et al., 2013).

The chronic stress hypothesis does not specify the actual
cause of death, which could be complex and variable.
Cavitation itself may not kill the plant, because xylem pressures
would have to drop to Pcrit (soil–canopy PLC = 100) for
desiccation to occur. Nevertheless, a large safety margin from
Pcrit can be associated with a very narrow margin of error from
Ecrit (e.g. Fig. 3b, drought-stressed supply–loss functions), and
it is possible that brief excursions of E above the loss function
‘ideal’ (e.g. caused by rapid increases in D) could trigger death
by desiccation during severe drought (Davis et al., 2002). But
even if cavitation itself does not kill, chronically high PLC > 60
will certainly be associated with even higher PLG (> 80; Fig. 8),
and hence chronically low photosynthetic rate and productivity
(Lu et al., 2010; Galvez et al., 2011, 2013; Anderegg et al.,
2012b; Plaut et al., 2012; Adams et al., 2013; Limousin et al.,
2013; Poyatos et al., 2013). Low k and P may also affect
growth independently of photosynthetic rate by limiting cell
expansion, reducing membrane permeability, and disrupting
phloem transport (Woodruff et al., 2004; Vilagrosa et al., 2010;
Sala et al., 2012; Hartmann et al., 2013; Mencuccini et al.,
2013; Sevanto et al., 2013; Sevanto, 2014). Low photosynthetic
rates increase susceptibility to heat and light stress (Chaves,
1991). All of these biotic stresses can increase susceptibility to
pests (Mattson & Haack, 1987; Clifford et al., 2013).

Short-term stresses associated with high PLC and low
productivity may eventually trigger positive feedbacks that
reinforce the persistence of high PLC after a drought is over. Such
feedbacks could include reduced recovery of water uptake and
transport by limited growth in root and shoot, loss of leaf area,
impaired refilling, and even shifts towards a more vulnerable k(P )
function (Resco et al., 2009; Anderegg et al., 2013b; Plaut et al.,
2013; Poyatos et al., 2013; Sevanto et al., 2013). Positive feedbacks
would amplify shorter term reductions in k,G, P and productivity,
creating a vicious cycle that ultimately dooms the plant long after
the drought has passed. Such feedbacks have been implicated in the
sometimes long lag time between drought andmortality (Anderegg
et al., 2013b).

The chronic stress hypothesis is more transparently inclusive
than the hydraulic failure–carbon starvation framework (McDo-
well et al., 2008), in that it avoids specifying why trees die from
drought, hence acknowledging roles of multiple stresses that
accompany reduced water transport. At the same time, it is explicit
in identifying low plant hydraulic conductance as a risk factor.
Plants with chronically depressed hydraulic and diffusive conductances
should die at higher rates.

Although the chronic stress hypothesis is moot on the cause of
death, it is a useful concept because PLC and PLG are readily
predictable from climate (e.g. Fig. 8), and risk thresholds can be
used to identify and forecast drought-related threats to plant health
(Fig. 8, gray ‘Mortality risk threshold’ band). For example, the
typical growing season rainfall in a midmontane aspen stand
appears sufficient to keep median PLC at a relatively healthy 20
(Fig. 8a, horizontal ‘Rain’ bar onWater input axis), consistent with
a strong reliance of these stands on summer rain (vs groundwater
reliance; Anderegg et al., 2013a). However, if growing season rain
falls to ≤ 30% of typical values, these stands would reach or exceed
the mortality risk threshold of PLC ≥ 60. The conclusion from this
mock simulation would be that midmontane aspen forests would
be seriously threatened by a growing season drought of ≤ 30%
normal rainfall.

The lower elevation cottonwood forest exhibits a different
vulnerability (Fig. 8b). At valley elevations (c. 1650 m), typical
growing season rain is barely sufficient to keep the cottonwood
stand below the PLC threshold (Fig. 8b, ‘Rain’ bar). This is
consistent with the absolute dependence of these riparian trees on
groundwater for survival in a drier climate (Rood et al., 2000).
Groundwater flow is influenced mostly by long-term trends in
winter precipitation (Castle et al., 2014). Thus, these riparian
species would be predicted to bemore vulnerable to chronically low
winter snowpacks (and human groundwater draw-down) than to
summer droughts.

Different again is the low-elevation sagebrush example (Fig. 8c).
Because of the deeper root system and greater cavitation resistance
of sagebrush, these stands appear to survive even a completely dry
summer with no groundwater input, because their maximum
possible median PLC at zero water input is below the mortality
threshold. This is consistent with the extremely low summer
rainfall (Fig. 8c, Rain bar) and remote water table of the sagebrush
habitat (Kolb&Sperry, 1999).Much of this shrub’s water supply is
from winter recharge of the rooting zone (Dobrowolski et al.,
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1990). As a result, this species is most vulnerable towinter drought,
even a short-termwinter drought. Simulations indicate that a single
dry winter that reduces soil recharge by 50%of field capacity would
be more than enough to threaten sagebrush health by driving the
stand above the mortality threshold (Fig. 8c, gray 50% winter
recharge for median PLC).

These examples are hypothetical, but demonstrate the mecha-
nistic rigor of using hydraulic theory to quantify plant responses to
climate. The approach captures the likelihood that not all climatic
variables are equally important across sites and plants. The theory’s
utility is not dependent on the validity or particulars of the chronic
stress hypothesis. Regardless of whether subsequent observations
support or undermine the existence or constancy of a particular
PLC/PLG threshold for mortality, the ability to predict transpi-
ration and productivity in response to drought is an important
advance in and of itself. Nevertheless, it seems a robust assumption
that plant healthwill decline over time if water and carbon are being
exchanged at a fraction of normal rates.

VIII. Conclusion

Plant hydraulics offers important tools for predicting how the
planet’s terrestrial vegetation will respond to climate change.
We have emphasized basic hydraulic principles and their utility
rather than details of implementation in hopes of encouraging
the modeling community to experiment with the supply–loss
concept and adapt it to their needs. The intentionally
parsimonious theory we advance is no more complex than
the representation of soil physics already present in most land
surface models, and yet it provides a mechanistically based
estimate of how plant water and CO2 fluxes respond to soil
and atmospheric water deficits. The rapidly growing database
of vulnerability curves (Choat et al., 2012) facilitates adding
‘xylem physics’ to close the gap between climatic water stress
and the physiological regulation of gas exchange. Tying a water
loss function to hydraulic supply is a powerfully simple way to
represent complex stomatal regulation under water-liming
conditions. The concept of hydraulic types can augment the
plant-functional-type approach already in use for representing
species-specific drought responses, with care taken to incorpo-
rate intraspecific variation (Anderegg, 2014). Testing the
hydraulic supply–loss theory is obviously a crucial step, but
not a difficult one, given the number of suitably instrumented
natural stands and plantations around the world.
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